Cargando…
Diversity of tryptophan halogenases in sponges of the genus Aplysina
Marine sponges are a prolific source of novel enzymes with promising biotechnological potential. Especially halogenases, which are key enzymes in the biosynthesis of brominated and chlorinated secondary metabolites, possess interesting properties towards the production of pharmaceuticals that are of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644159/ https://www.ncbi.nlm.nih.gov/pubmed/31276591 http://dx.doi.org/10.1093/femsec/fiz108 |
_version_ | 1783437201833459712 |
---|---|
author | Gutleben, Johanna Koehorst, Jasper J McPherson, Kyle Pomponi, Shirley Wijffels, René H Smidt, Hauke Sipkema, Detmer |
author_facet | Gutleben, Johanna Koehorst, Jasper J McPherson, Kyle Pomponi, Shirley Wijffels, René H Smidt, Hauke Sipkema, Detmer |
author_sort | Gutleben, Johanna |
collection | PubMed |
description | Marine sponges are a prolific source of novel enzymes with promising biotechnological potential. Especially halogenases, which are key enzymes in the biosynthesis of brominated and chlorinated secondary metabolites, possess interesting properties towards the production of pharmaceuticals that are often halogenated. In this study we used a polymerase chain reaction (PCR)-based screening to simultaneously examine and compare the richness and diversity of putative tryptophan halogenase protein sequences and bacterial community structures of six Aplysina species from the Mediterranean and Caribbean seas. At the phylum level, bacterial community composition was similar amongst all investigated species and predominated by Actinobacteria, Chloroflexi, Cyanobacteria, Gemmatimonadetes, and Proteobacteria. We detected four phylogenetically diverse clades of putative tryptophan halogenase protein sequences, which were only distantly related to previously reported halogenases. The Mediterranean species Aplysina aerophoba harbored unique halogenase sequences, of which the most predominant was related to a sponge-associated Psychrobacter-derived sequence. In contrast, the Caribbean species shared numerous novel halogenase sequence variants and exhibited a highly similar bacterial community composition at the operational taxonomic unit (OTU) level. Correlations of relative abundances of halogenases with those of bacterial taxa suggest that prominent sponge symbiotic bacteria, including Chloroflexi and Actinobacteria, are putative producers of the detected enzymes and may thus contribute to the chemical defense of their host. |
format | Online Article Text |
id | pubmed-6644159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-66441592019-07-25 Diversity of tryptophan halogenases in sponges of the genus Aplysina Gutleben, Johanna Koehorst, Jasper J McPherson, Kyle Pomponi, Shirley Wijffels, René H Smidt, Hauke Sipkema, Detmer FEMS Microbiol Ecol Research Article Marine sponges are a prolific source of novel enzymes with promising biotechnological potential. Especially halogenases, which are key enzymes in the biosynthesis of brominated and chlorinated secondary metabolites, possess interesting properties towards the production of pharmaceuticals that are often halogenated. In this study we used a polymerase chain reaction (PCR)-based screening to simultaneously examine and compare the richness and diversity of putative tryptophan halogenase protein sequences and bacterial community structures of six Aplysina species from the Mediterranean and Caribbean seas. At the phylum level, bacterial community composition was similar amongst all investigated species and predominated by Actinobacteria, Chloroflexi, Cyanobacteria, Gemmatimonadetes, and Proteobacteria. We detected four phylogenetically diverse clades of putative tryptophan halogenase protein sequences, which were only distantly related to previously reported halogenases. The Mediterranean species Aplysina aerophoba harbored unique halogenase sequences, of which the most predominant was related to a sponge-associated Psychrobacter-derived sequence. In contrast, the Caribbean species shared numerous novel halogenase sequence variants and exhibited a highly similar bacterial community composition at the operational taxonomic unit (OTU) level. Correlations of relative abundances of halogenases with those of bacterial taxa suggest that prominent sponge symbiotic bacteria, including Chloroflexi and Actinobacteria, are putative producers of the detected enzymes and may thus contribute to the chemical defense of their host. Oxford University Press 2019-07-05 /pmc/articles/PMC6644159/ /pubmed/31276591 http://dx.doi.org/10.1093/femsec/fiz108 Text en © FEMS 2019. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gutleben, Johanna Koehorst, Jasper J McPherson, Kyle Pomponi, Shirley Wijffels, René H Smidt, Hauke Sipkema, Detmer Diversity of tryptophan halogenases in sponges of the genus Aplysina |
title | Diversity of tryptophan halogenases in sponges of the genus Aplysina |
title_full | Diversity of tryptophan halogenases in sponges of the genus Aplysina |
title_fullStr | Diversity of tryptophan halogenases in sponges of the genus Aplysina |
title_full_unstemmed | Diversity of tryptophan halogenases in sponges of the genus Aplysina |
title_short | Diversity of tryptophan halogenases in sponges of the genus Aplysina |
title_sort | diversity of tryptophan halogenases in sponges of the genus aplysina |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644159/ https://www.ncbi.nlm.nih.gov/pubmed/31276591 http://dx.doi.org/10.1093/femsec/fiz108 |
work_keys_str_mv | AT gutlebenjohanna diversityoftryptophanhalogenasesinspongesofthegenusaplysina AT koehorstjasperj diversityoftryptophanhalogenasesinspongesofthegenusaplysina AT mcphersonkyle diversityoftryptophanhalogenasesinspongesofthegenusaplysina AT pomponishirley diversityoftryptophanhalogenasesinspongesofthegenusaplysina AT wijffelsreneh diversityoftryptophanhalogenasesinspongesofthegenusaplysina AT smidthauke diversityoftryptophanhalogenasesinspongesofthegenusaplysina AT sipkemadetmer diversityoftryptophanhalogenasesinspongesofthegenusaplysina |