Cargando…

Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data

[Image: see text] k(E) can be calculated either from the Rice–Ramsperger–Kassel–Marcus theory or by inverting macroscopic rate constants k(T). Here, we elaborate the inverse Laplace transform approach for k(E) reconstruction by examining the impact of k(T) data fitting accuracy. For this approach, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Firaha, Dzmitry S., Döntgen, Malte, Berkels, Benjamin, Leonhard, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644344/
https://www.ncbi.nlm.nih.gov/pubmed/31458958
http://dx.doi.org/10.1021/acsomega.8b00311
_version_ 1783437233200562176
author Firaha, Dzmitry S.
Döntgen, Malte
Berkels, Benjamin
Leonhard, Kai
author_facet Firaha, Dzmitry S.
Döntgen, Malte
Berkels, Benjamin
Leonhard, Kai
author_sort Firaha, Dzmitry S.
collection PubMed
description [Image: see text] k(E) can be calculated either from the Rice–Ramsperger–Kassel–Marcus theory or by inverting macroscopic rate constants k(T). Here, we elaborate the inverse Laplace transform approach for k(E) reconstruction by examining the impact of k(T) data fitting accuracy. For this approach, any inaccuracy in the reconstructed k(E) results from inaccurate/incomplete k(T) description. Therefore, we demonstrate how an improved mathematical description of k(T) data leads to accurate k(E) data. Refitting inaccurate/incomplete k(T), hence, allows for recapturing k(T) information that yields more accurate k(E) reconstructions. The present work suggests that accurate representation of experimental and theoretical k(T) data in a broad temperature range could be used to obtain k(T,p). Thus, purely temperature-dependent kinetic models could be converted into fully temperature- and pressure-dependent kinetic models.
format Online
Article
Text
id pubmed-6644344
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66443442019-08-27 Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data Firaha, Dzmitry S. Döntgen, Malte Berkels, Benjamin Leonhard, Kai ACS Omega [Image: see text] k(E) can be calculated either from the Rice–Ramsperger–Kassel–Marcus theory or by inverting macroscopic rate constants k(T). Here, we elaborate the inverse Laplace transform approach for k(E) reconstruction by examining the impact of k(T) data fitting accuracy. For this approach, any inaccuracy in the reconstructed k(E) results from inaccurate/incomplete k(T) description. Therefore, we demonstrate how an improved mathematical description of k(T) data leads to accurate k(E) data. Refitting inaccurate/incomplete k(T), hence, allows for recapturing k(T) information that yields more accurate k(E) reconstructions. The present work suggests that accurate representation of experimental and theoretical k(T) data in a broad temperature range could be used to obtain k(T,p). Thus, purely temperature-dependent kinetic models could be converted into fully temperature- and pressure-dependent kinetic models. American Chemical Society 2018-07-24 /pmc/articles/PMC6644344/ /pubmed/31458958 http://dx.doi.org/10.1021/acsomega.8b00311 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Firaha, Dzmitry S.
Döntgen, Malte
Berkels, Benjamin
Leonhard, Kai
Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data
title Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data
title_full Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data
title_fullStr Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data
title_full_unstemmed Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data
title_short Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data
title_sort pressure-dependent rate constant predictions utilizing the inverse laplace transform: a victim of deficient input data
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644344/
https://www.ncbi.nlm.nih.gov/pubmed/31458958
http://dx.doi.org/10.1021/acsomega.8b00311
work_keys_str_mv AT firahadzmitrys pressuredependentrateconstantpredictionsutilizingtheinverselaplacetransformavictimofdeficientinputdata
AT dontgenmalte pressuredependentrateconstantpredictionsutilizingtheinverselaplacetransformavictimofdeficientinputdata
AT berkelsbenjamin pressuredependentrateconstantpredictionsutilizingtheinverselaplacetransformavictimofdeficientinputdata
AT leonhardkai pressuredependentrateconstantpredictionsutilizingtheinverselaplacetransformavictimofdeficientinputdata