Cargando…

Molecular Ordering of Dithieno[2,3-d;2′,3′-d]benzo[2,1-b:3,4-b′]dithiophenes for Field-Effect Transistors

[Image: see text] Four derivatives of dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;3,4-b′]dithiophene (DTmBDT) have been synthesized to investigate the correlation between molecular structure, thin-film organization, and charge-carrier transport. Phenyl or thiophene end-capped derivatives at alpha positions...

Descripción completa

Detalles Bibliográficos
Autores principales: Keerthi, Ashok, Waliszewski, Witold, An, Cunbin, Jaber, Abdullah, Xia, Debin, Müllen, Klaus, Pisula, Wojciech, Marszalek, Tomasz, Baumgarten, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644372/
https://www.ncbi.nlm.nih.gov/pubmed/31458828
http://dx.doi.org/10.1021/acsomega.8b00836
Descripción
Sumario:[Image: see text] Four derivatives of dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;3,4-b′]dithiophene (DTmBDT) have been synthesized to investigate the correlation between molecular structure, thin-film organization, and charge-carrier transport. Phenyl or thiophene end-capped derivatives at alpha positions of the outer thiophenes of DTmBDT present vastly different optoelectronic properties in comparison with bay-position alkyl-chain-substituted DTmBDT, which was additionally confirmed by density functional theory simulations. The film morphology of the derivatives strongly depends on alkyl substituents, aromatic end-caps, and substrate temperature. Field-effect transistors based on DTmBDT derivatives with bay-substituted alkyl chains show the best performance within this studied series with a hole mobility up to 0.75 cm(2)/V s. Attachment of aromatic end-caps disturbs the ordering, limiting the charge-carrier transport. Higher substrate temperature during deposition of the DTmBDT derivatives with aromatic end-caps results in larger domains and improved the transistor mobilities but not beyond the alkylated DTmBDT.