Cargando…
Piezoelectric Response of Porous Nanotubes Derived from Hexagonal Boron Nitride under Strain Influence
[Image: see text] A computational study via periodic density functional theory of porous nanotubes derived from single-layer surfaces of porous hexagonal boron nitride nanotubes (PBNNTs) and inorganic graphenylene-like boron nitride nanotubes (IGP-BNNTs) has been carried out with the main focus in i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644391/ https://www.ncbi.nlm.nih.gov/pubmed/31458053 http://dx.doi.org/10.1021/acsomega.8b01634 |
_version_ | 1783437243741896704 |
---|---|
author | Fabris, Guilherme S. L. Marana, Naiara L. Longo, Elson Sambrano, Julio R. |
author_facet | Fabris, Guilherme S. L. Marana, Naiara L. Longo, Elson Sambrano, Julio R. |
author_sort | Fabris, Guilherme S. L. |
collection | PubMed |
description | [Image: see text] A computational study via periodic density functional theory of porous nanotubes derived from single-layer surfaces of porous hexagonal boron nitride nanotubes (PBNNTs) and inorganic graphenylene-like boron nitride nanotubes (IGP-BNNTs) has been carried out with the main focus in its piezoelectric behavior. The simulations showed that the strain provides a meaningful improve in the piezoelectric response on the zigzag porous boron nitride nanotubes. Additionally, its stability, possible formation, elastic, and electronic properties were analyzed, and for comparison purpose, the porous graphene and graphenylene nanotubes were studied. From the elastic properties study, it was found that IGP-BNNTs exhibited a higher rigidity because of the influence of the superficial porous area, as compared to PBNNTs. The present study provides evidence that the strain is a way to maximize the piezoelectric response and make this material a good candidate for electromechanical devices. |
format | Online Article Text |
id | pubmed-6644391 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66443912019-08-27 Piezoelectric Response of Porous Nanotubes Derived from Hexagonal Boron Nitride under Strain Influence Fabris, Guilherme S. L. Marana, Naiara L. Longo, Elson Sambrano, Julio R. ACS Omega [Image: see text] A computational study via periodic density functional theory of porous nanotubes derived from single-layer surfaces of porous hexagonal boron nitride nanotubes (PBNNTs) and inorganic graphenylene-like boron nitride nanotubes (IGP-BNNTs) has been carried out with the main focus in its piezoelectric behavior. The simulations showed that the strain provides a meaningful improve in the piezoelectric response on the zigzag porous boron nitride nanotubes. Additionally, its stability, possible formation, elastic, and electronic properties were analyzed, and for comparison purpose, the porous graphene and graphenylene nanotubes were studied. From the elastic properties study, it was found that IGP-BNNTs exhibited a higher rigidity because of the influence of the superficial porous area, as compared to PBNNTs. The present study provides evidence that the strain is a way to maximize the piezoelectric response and make this material a good candidate for electromechanical devices. American Chemical Society 2018-10-17 /pmc/articles/PMC6644391/ /pubmed/31458053 http://dx.doi.org/10.1021/acsomega.8b01634 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Fabris, Guilherme S. L. Marana, Naiara L. Longo, Elson Sambrano, Julio R. Piezoelectric Response of Porous Nanotubes Derived from Hexagonal Boron Nitride under Strain Influence |
title | Piezoelectric Response of Porous Nanotubes Derived
from Hexagonal Boron Nitride under Strain Influence |
title_full | Piezoelectric Response of Porous Nanotubes Derived
from Hexagonal Boron Nitride under Strain Influence |
title_fullStr | Piezoelectric Response of Porous Nanotubes Derived
from Hexagonal Boron Nitride under Strain Influence |
title_full_unstemmed | Piezoelectric Response of Porous Nanotubes Derived
from Hexagonal Boron Nitride under Strain Influence |
title_short | Piezoelectric Response of Porous Nanotubes Derived
from Hexagonal Boron Nitride under Strain Influence |
title_sort | piezoelectric response of porous nanotubes derived
from hexagonal boron nitride under strain influence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644391/ https://www.ncbi.nlm.nih.gov/pubmed/31458053 http://dx.doi.org/10.1021/acsomega.8b01634 |
work_keys_str_mv | AT fabrisguilhermesl piezoelectricresponseofporousnanotubesderivedfromhexagonalboronnitrideunderstraininfluence AT marananaiaral piezoelectricresponseofporousnanotubesderivedfromhexagonalboronnitrideunderstraininfluence AT longoelson piezoelectricresponseofporousnanotubesderivedfromhexagonalboronnitrideunderstraininfluence AT sambranojulior piezoelectricresponseofporousnanotubesderivedfromhexagonalboronnitrideunderstraininfluence |