Cargando…

Molecular Layer Deposition Using Ring-Opening Reactions: Molecular Modeling of the Film Growth and the Effects of Hydrogen Peroxide

[Image: see text] Novel coating materials are constantly needed for current and future applications in the area of microelectronics, biocompatible materials, and energy-related devices. Molecular layer deposition (MLD) is answering this cry and is an increasingly important coating method for organic...

Descripción completa

Detalles Bibliográficos
Autores principales: Keskiväli, Laura, Putkonen, Matti, Puhakka, Eini, Kenttä, Eija, Kint, Jeroen, Ramachandran, Ranjith K., Detavernier, Christophe, Simell, Pekka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644646/
https://www.ncbi.nlm.nih.gov/pubmed/31458876
http://dx.doi.org/10.1021/acsomega.8b01301
_version_ 1783437302029090816
author Keskiväli, Laura
Putkonen, Matti
Puhakka, Eini
Kenttä, Eija
Kint, Jeroen
Ramachandran, Ranjith K.
Detavernier, Christophe
Simell, Pekka
author_facet Keskiväli, Laura
Putkonen, Matti
Puhakka, Eini
Kenttä, Eija
Kint, Jeroen
Ramachandran, Ranjith K.
Detavernier, Christophe
Simell, Pekka
author_sort Keskiväli, Laura
collection PubMed
description [Image: see text] Novel coating materials are constantly needed for current and future applications in the area of microelectronics, biocompatible materials, and energy-related devices. Molecular layer deposition (MLD) is answering this cry and is an increasingly important coating method for organic and hybrid organic–inorganic thin films. In this study, we have focused on hybrid inorganic–organic coatings, based on trimethylaluminum, monofunctional aromatic precursors, and ring-opening reactions with ozone. We present the MLD processes, where the films are produced with trimethylaluminum, one of the three aromatic precursors (phenol, 3-(trifluoromethyl)phenol, and 2-fluoro-4-(trifluoromethyl)benzaldehyde), ozone, and the fourth precursor, hydrogen peroxide. According to the in situ Fourier-transform infrared spectroscopy measurements, the hydrogen peroxide reacts with the surface carboxylic acid group, forming a peroxyacid structure (C(O)–O–OH), in the case of all three processes. In addition, molecular modeling for the processes with three different aromatic precursors was carried out. When combining these modeling results with the experimental research data, new interesting aspects of the film growth, reactions, and properties are exploited.
format Online
Article
Text
id pubmed-6644646
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66446462019-08-27 Molecular Layer Deposition Using Ring-Opening Reactions: Molecular Modeling of the Film Growth and the Effects of Hydrogen Peroxide Keskiväli, Laura Putkonen, Matti Puhakka, Eini Kenttä, Eija Kint, Jeroen Ramachandran, Ranjith K. Detavernier, Christophe Simell, Pekka ACS Omega [Image: see text] Novel coating materials are constantly needed for current and future applications in the area of microelectronics, biocompatible materials, and energy-related devices. Molecular layer deposition (MLD) is answering this cry and is an increasingly important coating method for organic and hybrid organic–inorganic thin films. In this study, we have focused on hybrid inorganic–organic coatings, based on trimethylaluminum, monofunctional aromatic precursors, and ring-opening reactions with ozone. We present the MLD processes, where the films are produced with trimethylaluminum, one of the three aromatic precursors (phenol, 3-(trifluoromethyl)phenol, and 2-fluoro-4-(trifluoromethyl)benzaldehyde), ozone, and the fourth precursor, hydrogen peroxide. According to the in situ Fourier-transform infrared spectroscopy measurements, the hydrogen peroxide reacts with the surface carboxylic acid group, forming a peroxyacid structure (C(O)–O–OH), in the case of all three processes. In addition, molecular modeling for the processes with three different aromatic precursors was carried out. When combining these modeling results with the experimental research data, new interesting aspects of the film growth, reactions, and properties are exploited. American Chemical Society 2018-07-02 /pmc/articles/PMC6644646/ /pubmed/31458876 http://dx.doi.org/10.1021/acsomega.8b01301 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Keskiväli, Laura
Putkonen, Matti
Puhakka, Eini
Kenttä, Eija
Kint, Jeroen
Ramachandran, Ranjith K.
Detavernier, Christophe
Simell, Pekka
Molecular Layer Deposition Using Ring-Opening Reactions: Molecular Modeling of the Film Growth and the Effects of Hydrogen Peroxide
title Molecular Layer Deposition Using Ring-Opening Reactions: Molecular Modeling of the Film Growth and the Effects of Hydrogen Peroxide
title_full Molecular Layer Deposition Using Ring-Opening Reactions: Molecular Modeling of the Film Growth and the Effects of Hydrogen Peroxide
title_fullStr Molecular Layer Deposition Using Ring-Opening Reactions: Molecular Modeling of the Film Growth and the Effects of Hydrogen Peroxide
title_full_unstemmed Molecular Layer Deposition Using Ring-Opening Reactions: Molecular Modeling of the Film Growth and the Effects of Hydrogen Peroxide
title_short Molecular Layer Deposition Using Ring-Opening Reactions: Molecular Modeling of the Film Growth and the Effects of Hydrogen Peroxide
title_sort molecular layer deposition using ring-opening reactions: molecular modeling of the film growth and the effects of hydrogen peroxide
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644646/
https://www.ncbi.nlm.nih.gov/pubmed/31458876
http://dx.doi.org/10.1021/acsomega.8b01301
work_keys_str_mv AT keskivalilaura molecularlayerdepositionusingringopeningreactionsmolecularmodelingofthefilmgrowthandtheeffectsofhydrogenperoxide
AT putkonenmatti molecularlayerdepositionusingringopeningreactionsmolecularmodelingofthefilmgrowthandtheeffectsofhydrogenperoxide
AT puhakkaeini molecularlayerdepositionusingringopeningreactionsmolecularmodelingofthefilmgrowthandtheeffectsofhydrogenperoxide
AT kenttaeija molecularlayerdepositionusingringopeningreactionsmolecularmodelingofthefilmgrowthandtheeffectsofhydrogenperoxide
AT kintjeroen molecularlayerdepositionusingringopeningreactionsmolecularmodelingofthefilmgrowthandtheeffectsofhydrogenperoxide
AT ramachandranranjithk molecularlayerdepositionusingringopeningreactionsmolecularmodelingofthefilmgrowthandtheeffectsofhydrogenperoxide
AT detavernierchristophe molecularlayerdepositionusingringopeningreactionsmolecularmodelingofthefilmgrowthandtheeffectsofhydrogenperoxide
AT simellpekka molecularlayerdepositionusingringopeningreactionsmolecularmodelingofthefilmgrowthandtheeffectsofhydrogenperoxide