Cargando…
Two Low-Cost and Efficient Hole-Transporting Materials for n–i–p Type Organic–Inorganic Hybrid Perovskite Solar Cells
[Image: see text] The simpler the design, the better and more effective it is. Two novel conjugated triarylamine derivatives in donor−π–donor structure employing biphenyl core and pyrene core as π-bridges, which are termed as Bp-OMe and Py-OMe, have been synthesized and characterized and then applie...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644762/ https://www.ncbi.nlm.nih.gov/pubmed/31459193 http://dx.doi.org/10.1021/acsomega.8b01817 |
Sumario: | [Image: see text] The simpler the design, the better and more effective it is. Two novel conjugated triarylamine derivatives in donor−π–donor structure employing biphenyl core and pyrene core as π-bridges, which are termed as Bp-OMe and Py-OMe, have been synthesized and characterized and then applied to perovskite solar cells (PSCs) as hole-transport materials (HTMs) successfully. Using 2,2′,7,7′-tetrakis(N,N-di-p-methoxy-phenylamine)-9,9′-spirobiuorene (spiro-OMeTAD) as a relative reference, Py-OMe-based PSCs showed the best power conversion efficiency (PCE) of 19.28% under AM 1.5 G illumination at 100 mW cm(–2), which is comparable to that of PSCs based on spiro-OMeTAD with a best PCE of 18.57% with doping. Although Bp-OMe-based PSCs performed with relatively poor PCEs (best PCE of 15.06%) than those of Py-OMe-based PSCs, attributing to the poor planarity and hole mobility, taking the cost into consideration, Bp-OMe and Py-OMe are much more likely to be promising efficient HTMs for PSCs. |
---|