Cargando…
Reductive Cleavage of Organic Peroxides by Iron Salts and Thiols
[Image: see text] Despite the low bond strength of the oxygen–oxygen bond, organic peroxides are often surprisingly resistant to cleavage by nucleophiles and reductants. As a result, achieving decomposition under mild conditions can be challenging. Herein, we explore the reactivity of a selection of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644787/ https://www.ncbi.nlm.nih.gov/pubmed/31458099 http://dx.doi.org/10.1021/acsomega.8b01977 |
_version_ | 1783437327483273216 |
---|---|
author | Olson, Andrew S. Jameson, Abigail J. Kyasa, Shiva K. Evans, Boone W. Dussault, Patrick H. |
author_facet | Olson, Andrew S. Jameson, Abigail J. Kyasa, Shiva K. Evans, Boone W. Dussault, Patrick H. |
author_sort | Olson, Andrew S. |
collection | PubMed |
description | [Image: see text] Despite the low bond strength of the oxygen–oxygen bond, organic peroxides are often surprisingly resistant to cleavage by nucleophiles and reductants. As a result, achieving decomposition under mild conditions can be challenging. Herein, we explore the reactivity of a selection of peroxides toward thiolates, phenyl selenide, Fe(II) salts, and iron thiolates. Peroxides activated by conjugation, strain, or stereoelectronics are rapidly cleaved at room temperature by thiolate anions, phenylselenide, or Fe(II) salts. Under the same conditions, unhindered dialkyl peroxides are only marginally reactive; hindered peroxides, including triacetone triperoxide and diacetone diperoxide (DADP), are inert. In contrast, all but the most hindered of peroxides are rapidly (<1 min at concentrations down to ∼40 mM) cleaved by mixtures of thiols and iron salts. Our observations suggest the possible intermediacy of strongly reducing complexes that are readily regenerated in the presence of stoichiometric thiolate or hydride. In the case of DADP, an easily prepared explosive of significant societal concern, catalytic amounts of iron and thiol are capable of promoting rapid and complete disproportionation. The availability of inexpensive and readily available catalysts for the mild reductive degradation of all but the most hindered of peroxides could have significant applications for controlled remediation of explosives or unwanted radical initiators. |
format | Online Article Text |
id | pubmed-6644787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66447872019-08-27 Reductive Cleavage of Organic Peroxides by Iron Salts and Thiols Olson, Andrew S. Jameson, Abigail J. Kyasa, Shiva K. Evans, Boone W. Dussault, Patrick H. ACS Omega [Image: see text] Despite the low bond strength of the oxygen–oxygen bond, organic peroxides are often surprisingly resistant to cleavage by nucleophiles and reductants. As a result, achieving decomposition under mild conditions can be challenging. Herein, we explore the reactivity of a selection of peroxides toward thiolates, phenyl selenide, Fe(II) salts, and iron thiolates. Peroxides activated by conjugation, strain, or stereoelectronics are rapidly cleaved at room temperature by thiolate anions, phenylselenide, or Fe(II) salts. Under the same conditions, unhindered dialkyl peroxides are only marginally reactive; hindered peroxides, including triacetone triperoxide and diacetone diperoxide (DADP), are inert. In contrast, all but the most hindered of peroxides are rapidly (<1 min at concentrations down to ∼40 mM) cleaved by mixtures of thiols and iron salts. Our observations suggest the possible intermediacy of strongly reducing complexes that are readily regenerated in the presence of stoichiometric thiolate or hydride. In the case of DADP, an easily prepared explosive of significant societal concern, catalytic amounts of iron and thiol are capable of promoting rapid and complete disproportionation. The availability of inexpensive and readily available catalysts for the mild reductive degradation of all but the most hindered of peroxides could have significant applications for controlled remediation of explosives or unwanted radical initiators. American Chemical Society 2018-10-25 /pmc/articles/PMC6644787/ /pubmed/31458099 http://dx.doi.org/10.1021/acsomega.8b01977 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Olson, Andrew S. Jameson, Abigail J. Kyasa, Shiva K. Evans, Boone W. Dussault, Patrick H. Reductive Cleavage of Organic Peroxides by Iron Salts and Thiols |
title | Reductive Cleavage of Organic Peroxides by Iron Salts
and Thiols |
title_full | Reductive Cleavage of Organic Peroxides by Iron Salts
and Thiols |
title_fullStr | Reductive Cleavage of Organic Peroxides by Iron Salts
and Thiols |
title_full_unstemmed | Reductive Cleavage of Organic Peroxides by Iron Salts
and Thiols |
title_short | Reductive Cleavage of Organic Peroxides by Iron Salts
and Thiols |
title_sort | reductive cleavage of organic peroxides by iron salts
and thiols |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644787/ https://www.ncbi.nlm.nih.gov/pubmed/31458099 http://dx.doi.org/10.1021/acsomega.8b01977 |
work_keys_str_mv | AT olsonandrews reductivecleavageoforganicperoxidesbyironsaltsandthiols AT jamesonabigailj reductivecleavageoforganicperoxidesbyironsaltsandthiols AT kyasashivak reductivecleavageoforganicperoxidesbyironsaltsandthiols AT evansboonew reductivecleavageoforganicperoxidesbyironsaltsandthiols AT dussaultpatrickh reductivecleavageoforganicperoxidesbyironsaltsandthiols |