Cargando…
Seed-Mediated Growth of Ag@Au Nanodisks with Improved Chemical Stability and Surface-Enhanced Raman Scattering
[Image: see text] Bimetallic Ag@Au nanoparticles (NPs) have received significant research interest because of their unique optical properties and molecular sensing ability through surface-enhanced Raman scattering (SERS). However, the synthesis of Ag@Au core–shell plasmonic nanostructures with preci...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644819/ https://www.ncbi.nlm.nih.gov/pubmed/31457992 http://dx.doi.org/10.1021/acsomega.8b02333 |
_version_ | 1783437334933405696 |
---|---|
author | Krishnan, Siva Kumar Esparza, Rodrigo Flores-Ruiz, F. J. Padilla-Ortega, Erika Luna-Bárcenas, Gabriel Sanchez, Isaac. C. Pal, Umapada |
author_facet | Krishnan, Siva Kumar Esparza, Rodrigo Flores-Ruiz, F. J. Padilla-Ortega, Erika Luna-Bárcenas, Gabriel Sanchez, Isaac. C. Pal, Umapada |
author_sort | Krishnan, Siva Kumar |
collection | PubMed |
description | [Image: see text] Bimetallic Ag@Au nanoparticles (NPs) have received significant research interest because of their unique optical properties and molecular sensing ability through surface-enhanced Raman scattering (SERS). However, the synthesis of Ag@Au core–shell plasmonic nanostructures with precisely controlled size and shape remained a great challenge. Here, we report a simple approach for the synthesis of bimetallic Ag@Au nanodisks of about 13.5 nm thickness and different diameters through a seed-mediated growth process. The synthesis involves the conformal deposition of Au atoms at the corner sites of Ag nanoplate (AgNPL) seeds coupled with site-selective oxidative etching of AgNPL edges to generate Ag@Au nanodisks. The resultant Ag@Au nanodisks manifest significantly improved chemical stability and tunable localized surface plasmon resonance from the visible to the near-infrared spectral range. Moreover, in comparison to AgNPLs, the Ag@Au nanodisks showed greatly enhanced SERS performance with an enhancement factor up to 0.47 × 10(5), which is nearly 3-fold higher than that of the original AgNPLs (0.18 × 10(5)). Furthermore, the Ag@Au nanodisks show a high sensitivity for detecting probe molecules such as crystal violet of concentration as low as 10(–9) M and excellent reproducibility, with the SERS intensity fluctuation less than 12.5%. The synthesis route adapted for the controlled fabrication of Ag@Au nanodisks can be a potential platform for maneuvering other bimetallic plasmonic nanostructures useful for plasmonics and sensing applications. |
format | Online Article Text |
id | pubmed-6644819 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66448192019-08-27 Seed-Mediated Growth of Ag@Au Nanodisks with Improved Chemical Stability and Surface-Enhanced Raman Scattering Krishnan, Siva Kumar Esparza, Rodrigo Flores-Ruiz, F. J. Padilla-Ortega, Erika Luna-Bárcenas, Gabriel Sanchez, Isaac. C. Pal, Umapada ACS Omega [Image: see text] Bimetallic Ag@Au nanoparticles (NPs) have received significant research interest because of their unique optical properties and molecular sensing ability through surface-enhanced Raman scattering (SERS). However, the synthesis of Ag@Au core–shell plasmonic nanostructures with precisely controlled size and shape remained a great challenge. Here, we report a simple approach for the synthesis of bimetallic Ag@Au nanodisks of about 13.5 nm thickness and different diameters through a seed-mediated growth process. The synthesis involves the conformal deposition of Au atoms at the corner sites of Ag nanoplate (AgNPL) seeds coupled with site-selective oxidative etching of AgNPL edges to generate Ag@Au nanodisks. The resultant Ag@Au nanodisks manifest significantly improved chemical stability and tunable localized surface plasmon resonance from the visible to the near-infrared spectral range. Moreover, in comparison to AgNPLs, the Ag@Au nanodisks showed greatly enhanced SERS performance with an enhancement factor up to 0.47 × 10(5), which is nearly 3-fold higher than that of the original AgNPLs (0.18 × 10(5)). Furthermore, the Ag@Au nanodisks show a high sensitivity for detecting probe molecules such as crystal violet of concentration as low as 10(–9) M and excellent reproducibility, with the SERS intensity fluctuation less than 12.5%. The synthesis route adapted for the controlled fabrication of Ag@Au nanodisks can be a potential platform for maneuvering other bimetallic plasmonic nanostructures useful for plasmonics and sensing applications. American Chemical Society 2018-10-04 /pmc/articles/PMC6644819/ /pubmed/31457992 http://dx.doi.org/10.1021/acsomega.8b02333 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Krishnan, Siva Kumar Esparza, Rodrigo Flores-Ruiz, F. J. Padilla-Ortega, Erika Luna-Bárcenas, Gabriel Sanchez, Isaac. C. Pal, Umapada Seed-Mediated Growth of Ag@Au Nanodisks with Improved Chemical Stability and Surface-Enhanced Raman Scattering |
title | Seed-Mediated Growth of Ag@Au Nanodisks with Improved
Chemical Stability and Surface-Enhanced Raman Scattering |
title_full | Seed-Mediated Growth of Ag@Au Nanodisks with Improved
Chemical Stability and Surface-Enhanced Raman Scattering |
title_fullStr | Seed-Mediated Growth of Ag@Au Nanodisks with Improved
Chemical Stability and Surface-Enhanced Raman Scattering |
title_full_unstemmed | Seed-Mediated Growth of Ag@Au Nanodisks with Improved
Chemical Stability and Surface-Enhanced Raman Scattering |
title_short | Seed-Mediated Growth of Ag@Au Nanodisks with Improved
Chemical Stability and Surface-Enhanced Raman Scattering |
title_sort | seed-mediated growth of ag@au nanodisks with improved
chemical stability and surface-enhanced raman scattering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644819/ https://www.ncbi.nlm.nih.gov/pubmed/31457992 http://dx.doi.org/10.1021/acsomega.8b02333 |
work_keys_str_mv | AT krishnansivakumar seedmediatedgrowthofagaunanodiskswithimprovedchemicalstabilityandsurfaceenhancedramanscattering AT esparzarodrigo seedmediatedgrowthofagaunanodiskswithimprovedchemicalstabilityandsurfaceenhancedramanscattering AT floresruizfj seedmediatedgrowthofagaunanodiskswithimprovedchemicalstabilityandsurfaceenhancedramanscattering AT padillaortegaerika seedmediatedgrowthofagaunanodiskswithimprovedchemicalstabilityandsurfaceenhancedramanscattering AT lunabarcenasgabriel seedmediatedgrowthofagaunanodiskswithimprovedchemicalstabilityandsurfaceenhancedramanscattering AT sanchezisaacc seedmediatedgrowthofagaunanodiskswithimprovedchemicalstabilityandsurfaceenhancedramanscattering AT palumapada seedmediatedgrowthofagaunanodiskswithimprovedchemicalstabilityandsurfaceenhancedramanscattering |