Cargando…

Electrochemical Performance of Nanosized Disordered LiVOPO(4)

[Image: see text] ε-LiVOPO(4) is a promising multielectron cathode material for Li-ion batteries that can accommodate two electrons per vanadium, leading to higher energy densities. However, poor electronic conductivity and low lithium ion diffusivity currently result in low rate capability and poor...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yong, Zhou, Hui, Seymour, Ieuan D., Britto, Sylvia, Rana, Jatinkumar, Wangoh, Linda W., Huang, Yiqing, Yin, Qiyue, Reeves, Philip J., Zuba, Mateusz, Chung, Youngmin, Omenya, Fredrick, Chernova, Natasha A., Zhou, Guangwen, Piper, Louis F. J., Grey, Clare P., Whittingham, M. Stanley
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644837/
https://www.ncbi.nlm.nih.gov/pubmed/31458891
http://dx.doi.org/10.1021/acsomega.8b00763
_version_ 1783437339154972672
author Shi, Yong
Zhou, Hui
Seymour, Ieuan D.
Britto, Sylvia
Rana, Jatinkumar
Wangoh, Linda W.
Huang, Yiqing
Yin, Qiyue
Reeves, Philip J.
Zuba, Mateusz
Chung, Youngmin
Omenya, Fredrick
Chernova, Natasha A.
Zhou, Guangwen
Piper, Louis F. J.
Grey, Clare P.
Whittingham, M. Stanley
author_facet Shi, Yong
Zhou, Hui
Seymour, Ieuan D.
Britto, Sylvia
Rana, Jatinkumar
Wangoh, Linda W.
Huang, Yiqing
Yin, Qiyue
Reeves, Philip J.
Zuba, Mateusz
Chung, Youngmin
Omenya, Fredrick
Chernova, Natasha A.
Zhou, Guangwen
Piper, Louis F. J.
Grey, Clare P.
Whittingham, M. Stanley
author_sort Shi, Yong
collection PubMed
description [Image: see text] ε-LiVOPO(4) is a promising multielectron cathode material for Li-ion batteries that can accommodate two electrons per vanadium, leading to higher energy densities. However, poor electronic conductivity and low lithium ion diffusivity currently result in low rate capability and poor cycle life. To enhance the electrochemical performance of ε-LiVOPO(4), in this work, we optimized its solid-state synthesis route using in situ synchrotron X-ray diffraction and applied a combination of high-energy ball-milling with electronically and ionically conductive coatings aiming to improve bulk and surface Li diffusion. We show that high-energy ball-milling, while reducing the particle size also introduces structural disorder, as evidenced by (7)Li and (31)P NMR and X-ray absorption spectroscopy. We also show that a combination of electronically and ionically conductive coatings helps to utilize close to theoretical capacity for ε-LiVOPO(4) at C/50 (1 C = 153 mA h g(–1)) and to enhance rate performance and capacity retention. The optimized ε-LiVOPO(4)/Li(3)VO(4)/acetylene black composite yields the high cycling capacity of 250 mA h g(–1) at C/5 for over 70 cycles.
format Online
Article
Text
id pubmed-6644837
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66448372019-08-27 Electrochemical Performance of Nanosized Disordered LiVOPO(4) Shi, Yong Zhou, Hui Seymour, Ieuan D. Britto, Sylvia Rana, Jatinkumar Wangoh, Linda W. Huang, Yiqing Yin, Qiyue Reeves, Philip J. Zuba, Mateusz Chung, Youngmin Omenya, Fredrick Chernova, Natasha A. Zhou, Guangwen Piper, Louis F. J. Grey, Clare P. Whittingham, M. Stanley ACS Omega [Image: see text] ε-LiVOPO(4) is a promising multielectron cathode material for Li-ion batteries that can accommodate two electrons per vanadium, leading to higher energy densities. However, poor electronic conductivity and low lithium ion diffusivity currently result in low rate capability and poor cycle life. To enhance the electrochemical performance of ε-LiVOPO(4), in this work, we optimized its solid-state synthesis route using in situ synchrotron X-ray diffraction and applied a combination of high-energy ball-milling with electronically and ionically conductive coatings aiming to improve bulk and surface Li diffusion. We show that high-energy ball-milling, while reducing the particle size also introduces structural disorder, as evidenced by (7)Li and (31)P NMR and X-ray absorption spectroscopy. We also show that a combination of electronically and ionically conductive coatings helps to utilize close to theoretical capacity for ε-LiVOPO(4) at C/50 (1 C = 153 mA h g(–1)) and to enhance rate performance and capacity retention. The optimized ε-LiVOPO(4)/Li(3)VO(4)/acetylene black composite yields the high cycling capacity of 250 mA h g(–1) at C/5 for over 70 cycles. American Chemical Society 2018-07-03 /pmc/articles/PMC6644837/ /pubmed/31458891 http://dx.doi.org/10.1021/acsomega.8b00763 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Shi, Yong
Zhou, Hui
Seymour, Ieuan D.
Britto, Sylvia
Rana, Jatinkumar
Wangoh, Linda W.
Huang, Yiqing
Yin, Qiyue
Reeves, Philip J.
Zuba, Mateusz
Chung, Youngmin
Omenya, Fredrick
Chernova, Natasha A.
Zhou, Guangwen
Piper, Louis F. J.
Grey, Clare P.
Whittingham, M. Stanley
Electrochemical Performance of Nanosized Disordered LiVOPO(4)
title Electrochemical Performance of Nanosized Disordered LiVOPO(4)
title_full Electrochemical Performance of Nanosized Disordered LiVOPO(4)
title_fullStr Electrochemical Performance of Nanosized Disordered LiVOPO(4)
title_full_unstemmed Electrochemical Performance of Nanosized Disordered LiVOPO(4)
title_short Electrochemical Performance of Nanosized Disordered LiVOPO(4)
title_sort electrochemical performance of nanosized disordered livopo(4)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644837/
https://www.ncbi.nlm.nih.gov/pubmed/31458891
http://dx.doi.org/10.1021/acsomega.8b00763
work_keys_str_mv AT shiyong electrochemicalperformanceofnanosizeddisorderedlivopo4
AT zhouhui electrochemicalperformanceofnanosizeddisorderedlivopo4
AT seymourieuand electrochemicalperformanceofnanosizeddisorderedlivopo4
AT brittosylvia electrochemicalperformanceofnanosizeddisorderedlivopo4
AT ranajatinkumar electrochemicalperformanceofnanosizeddisorderedlivopo4
AT wangohlindaw electrochemicalperformanceofnanosizeddisorderedlivopo4
AT huangyiqing electrochemicalperformanceofnanosizeddisorderedlivopo4
AT yinqiyue electrochemicalperformanceofnanosizeddisorderedlivopo4
AT reevesphilipj electrochemicalperformanceofnanosizeddisorderedlivopo4
AT zubamateusz electrochemicalperformanceofnanosizeddisorderedlivopo4
AT chungyoungmin electrochemicalperformanceofnanosizeddisorderedlivopo4
AT omenyafredrick electrochemicalperformanceofnanosizeddisorderedlivopo4
AT chernovanatashaa electrochemicalperformanceofnanosizeddisorderedlivopo4
AT zhouguangwen electrochemicalperformanceofnanosizeddisorderedlivopo4
AT piperlouisfj electrochemicalperformanceofnanosizeddisorderedlivopo4
AT greyclarep electrochemicalperformanceofnanosizeddisorderedlivopo4
AT whittinghammstanley electrochemicalperformanceofnanosizeddisorderedlivopo4