Cargando…
Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions
[Image: see text] Herein, gum ghatti (GGTI)-g-[sodium acrylate (SA)-co-3-(N-(4-(4-methyl pentanoate))acrylamido)propanoate (NMPAP)-co-4-(acrylamido)-4-methyl pentanoate (AMP)-co-N-isopropylacrylamide (NIPA)] (i.e., GGTI-g-TetraP), a novel interpenetrating tetrapolymer network-based sustainable hydro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644869/ https://www.ncbi.nlm.nih.gov/pubmed/31459187 http://dx.doi.org/10.1021/acsomega.8b01218 |
_version_ | 1783437344372686848 |
---|---|
author | Mondal, Himarati Karmakar, Mrinmoy Dutta, Arnab Mahapatra, Manas Deb, Mousumi Mitra, Madhushree Roy, Joy Sankar Deb Roy, Chandan Chattopadhyay, Pijush Kanti Singha, Nayan Ranjan |
author_facet | Mondal, Himarati Karmakar, Mrinmoy Dutta, Arnab Mahapatra, Manas Deb, Mousumi Mitra, Madhushree Roy, Joy Sankar Deb Roy, Chandan Chattopadhyay, Pijush Kanti Singha, Nayan Ranjan |
author_sort | Mondal, Himarati |
collection | PubMed |
description | [Image: see text] Herein, gum ghatti (GGTI)-g-[sodium acrylate (SA)-co-3-(N-(4-(4-methyl pentanoate))acrylamido)propanoate (NMPAP)-co-4-(acrylamido)-4-methyl pentanoate (AMP)-co-N-isopropylacrylamide (NIPA)] (i.e., GGTI-g-TetraP), a novel interpenetrating tetrapolymer network-based sustainable hydrogel, possessing extraordinary physicochemical properties and excellent recyclability, has been synthesized via grafting of GGTI and in situ strategic protrusion of NMPAP and AMP during the solution polymerization of SA and NIPA, through systematic multistage optimization of ingredients and temperature, for ligand-selective superadsorption of hazardous metal ions (M(II)), such as Sr(II), Hg(II), and Cu(II). The in situ allocation of NMPAP and AMP via N–H and C–H activations, grafting of GGTI into the SA-co-NMPAP-co-AMP-co-NIPA (TetraP) matrix, the effect of comonomer compositions on ligand-selective adsorption, crystallinity, thermal stabilities, surface properties, swellability, adsorption capacities (ACs), mechanical properties, and the superadsorption mechanism have been apprehended via extensive microstructural analyses of unloaded and/or loaded GGTI-g-TetraP1 and GGTI-g-TetraP2 bearing SA/NIPA in 8:1 and 2:1 ratios, respectively, using Fourier transform infrared (FTIR), (1)H/(13)C/DEPT-135 NMR, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, rheological analysis, and energy-dispersive X-ray spectrometry, along with measuring % gel content, pH at point of zero charge (pH(PZC)), and % graft ratio. The thermodynamically spontaneous chemisorption has been inferred from FTIR, XPS, fitting of kinetics data to pseudo-second-order model, and activation energies. The chemisorption data have exhibited excellent fitting to the Langmuir isotherm model. For Sr(II), Hg(II), and Cu(II), ACs were 1940.24/1748.36, 1759.50/1848.03, and 1903.64/1781.63 mg g(–1), respectively, at 293 K, 0.02 g of GGTI-g-TetraP1/2, and initial concentration of M(II) = 500–1000 ppm. |
format | Online Article Text |
id | pubmed-6644869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66448692019-08-27 Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions Mondal, Himarati Karmakar, Mrinmoy Dutta, Arnab Mahapatra, Manas Deb, Mousumi Mitra, Madhushree Roy, Joy Sankar Deb Roy, Chandan Chattopadhyay, Pijush Kanti Singha, Nayan Ranjan ACS Omega [Image: see text] Herein, gum ghatti (GGTI)-g-[sodium acrylate (SA)-co-3-(N-(4-(4-methyl pentanoate))acrylamido)propanoate (NMPAP)-co-4-(acrylamido)-4-methyl pentanoate (AMP)-co-N-isopropylacrylamide (NIPA)] (i.e., GGTI-g-TetraP), a novel interpenetrating tetrapolymer network-based sustainable hydrogel, possessing extraordinary physicochemical properties and excellent recyclability, has been synthesized via grafting of GGTI and in situ strategic protrusion of NMPAP and AMP during the solution polymerization of SA and NIPA, through systematic multistage optimization of ingredients and temperature, for ligand-selective superadsorption of hazardous metal ions (M(II)), such as Sr(II), Hg(II), and Cu(II). The in situ allocation of NMPAP and AMP via N–H and C–H activations, grafting of GGTI into the SA-co-NMPAP-co-AMP-co-NIPA (TetraP) matrix, the effect of comonomer compositions on ligand-selective adsorption, crystallinity, thermal stabilities, surface properties, swellability, adsorption capacities (ACs), mechanical properties, and the superadsorption mechanism have been apprehended via extensive microstructural analyses of unloaded and/or loaded GGTI-g-TetraP1 and GGTI-g-TetraP2 bearing SA/NIPA in 8:1 and 2:1 ratios, respectively, using Fourier transform infrared (FTIR), (1)H/(13)C/DEPT-135 NMR, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, rheological analysis, and energy-dispersive X-ray spectrometry, along with measuring % gel content, pH at point of zero charge (pH(PZC)), and % graft ratio. The thermodynamically spontaneous chemisorption has been inferred from FTIR, XPS, fitting of kinetics data to pseudo-second-order model, and activation energies. The chemisorption data have exhibited excellent fitting to the Langmuir isotherm model. For Sr(II), Hg(II), and Cu(II), ACs were 1940.24/1748.36, 1759.50/1848.03, and 1903.64/1781.63 mg g(–1), respectively, at 293 K, 0.02 g of GGTI-g-TetraP1/2, and initial concentration of M(II) = 500–1000 ppm. American Chemical Society 2018-09-06 /pmc/articles/PMC6644869/ /pubmed/31459187 http://dx.doi.org/10.1021/acsomega.8b01218 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Mondal, Himarati Karmakar, Mrinmoy Dutta, Arnab Mahapatra, Manas Deb, Mousumi Mitra, Madhushree Roy, Joy Sankar Deb Roy, Chandan Chattopadhyay, Pijush Kanti Singha, Nayan Ranjan Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions |
title | Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted
and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent
Superadsorption of Metal Ions |
title_full | Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted
and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent
Superadsorption of Metal Ions |
title_fullStr | Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted
and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent
Superadsorption of Metal Ions |
title_full_unstemmed | Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted
and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent
Superadsorption of Metal Ions |
title_short | Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted
and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent
Superadsorption of Metal Ions |
title_sort | tetrapolymer network hydrogels via gum ghatti-grafted
and n–h/c–h-activated allocation of monomers for composition-dependent
superadsorption of metal ions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644869/ https://www.ncbi.nlm.nih.gov/pubmed/31459187 http://dx.doi.org/10.1021/acsomega.8b01218 |
work_keys_str_mv | AT mondalhimarati tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT karmakarmrinmoy tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT duttaarnab tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT mahapatramanas tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT debmousumi tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT mitramadhushree tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT royjoysankardeb tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT roychandan tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT chattopadhyaypijushkanti tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions AT singhanayanranjan tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions |