Cargando…

Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions

[Image: see text] Herein, gum ghatti (GGTI)-g-[sodium acrylate (SA)-co-3-(N-(4-(4-methyl pentanoate))acrylamido)propanoate (NMPAP)-co-4-(acrylamido)-4-methyl pentanoate (AMP)-co-N-isopropylacrylamide (NIPA)] (i.e., GGTI-g-TetraP), a novel interpenetrating tetrapolymer network-based sustainable hydro...

Descripción completa

Detalles Bibliográficos
Autores principales: Mondal, Himarati, Karmakar, Mrinmoy, Dutta, Arnab, Mahapatra, Manas, Deb, Mousumi, Mitra, Madhushree, Roy, Joy Sankar Deb, Roy, Chandan, Chattopadhyay, Pijush Kanti, Singha, Nayan Ranjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644869/
https://www.ncbi.nlm.nih.gov/pubmed/31459187
http://dx.doi.org/10.1021/acsomega.8b01218
_version_ 1783437344372686848
author Mondal, Himarati
Karmakar, Mrinmoy
Dutta, Arnab
Mahapatra, Manas
Deb, Mousumi
Mitra, Madhushree
Roy, Joy Sankar Deb
Roy, Chandan
Chattopadhyay, Pijush Kanti
Singha, Nayan Ranjan
author_facet Mondal, Himarati
Karmakar, Mrinmoy
Dutta, Arnab
Mahapatra, Manas
Deb, Mousumi
Mitra, Madhushree
Roy, Joy Sankar Deb
Roy, Chandan
Chattopadhyay, Pijush Kanti
Singha, Nayan Ranjan
author_sort Mondal, Himarati
collection PubMed
description [Image: see text] Herein, gum ghatti (GGTI)-g-[sodium acrylate (SA)-co-3-(N-(4-(4-methyl pentanoate))acrylamido)propanoate (NMPAP)-co-4-(acrylamido)-4-methyl pentanoate (AMP)-co-N-isopropylacrylamide (NIPA)] (i.e., GGTI-g-TetraP), a novel interpenetrating tetrapolymer network-based sustainable hydrogel, possessing extraordinary physicochemical properties and excellent recyclability, has been synthesized via grafting of GGTI and in situ strategic protrusion of NMPAP and AMP during the solution polymerization of SA and NIPA, through systematic multistage optimization of ingredients and temperature, for ligand-selective superadsorption of hazardous metal ions (M(II)), such as Sr(II), Hg(II), and Cu(II). The in situ allocation of NMPAP and AMP via N–H and C–H activations, grafting of GGTI into the SA-co-NMPAP-co-AMP-co-NIPA (TetraP) matrix, the effect of comonomer compositions on ligand-selective adsorption, crystallinity, thermal stabilities, surface properties, swellability, adsorption capacities (ACs), mechanical properties, and the superadsorption mechanism have been apprehended via extensive microstructural analyses of unloaded and/or loaded GGTI-g-TetraP1 and GGTI-g-TetraP2 bearing SA/NIPA in 8:1 and 2:1 ratios, respectively, using Fourier transform infrared (FTIR), (1)H/(13)C/DEPT-135 NMR, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, rheological analysis, and energy-dispersive X-ray spectrometry, along with measuring % gel content, pH at point of zero charge (pH(PZC)), and % graft ratio. The thermodynamically spontaneous chemisorption has been inferred from FTIR, XPS, fitting of kinetics data to pseudo-second-order model, and activation energies. The chemisorption data have exhibited excellent fitting to the Langmuir isotherm model. For Sr(II), Hg(II), and Cu(II), ACs were 1940.24/1748.36, 1759.50/1848.03, and 1903.64/1781.63 mg g(–1), respectively, at 293 K, 0.02 g of GGTI-g-TetraP1/2, and initial concentration of M(II) = 500–1000 ppm.
format Online
Article
Text
id pubmed-6644869
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66448692019-08-27 Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions Mondal, Himarati Karmakar, Mrinmoy Dutta, Arnab Mahapatra, Manas Deb, Mousumi Mitra, Madhushree Roy, Joy Sankar Deb Roy, Chandan Chattopadhyay, Pijush Kanti Singha, Nayan Ranjan ACS Omega [Image: see text] Herein, gum ghatti (GGTI)-g-[sodium acrylate (SA)-co-3-(N-(4-(4-methyl pentanoate))acrylamido)propanoate (NMPAP)-co-4-(acrylamido)-4-methyl pentanoate (AMP)-co-N-isopropylacrylamide (NIPA)] (i.e., GGTI-g-TetraP), a novel interpenetrating tetrapolymer network-based sustainable hydrogel, possessing extraordinary physicochemical properties and excellent recyclability, has been synthesized via grafting of GGTI and in situ strategic protrusion of NMPAP and AMP during the solution polymerization of SA and NIPA, through systematic multistage optimization of ingredients and temperature, for ligand-selective superadsorption of hazardous metal ions (M(II)), such as Sr(II), Hg(II), and Cu(II). The in situ allocation of NMPAP and AMP via N–H and C–H activations, grafting of GGTI into the SA-co-NMPAP-co-AMP-co-NIPA (TetraP) matrix, the effect of comonomer compositions on ligand-selective adsorption, crystallinity, thermal stabilities, surface properties, swellability, adsorption capacities (ACs), mechanical properties, and the superadsorption mechanism have been apprehended via extensive microstructural analyses of unloaded and/or loaded GGTI-g-TetraP1 and GGTI-g-TetraP2 bearing SA/NIPA in 8:1 and 2:1 ratios, respectively, using Fourier transform infrared (FTIR), (1)H/(13)C/DEPT-135 NMR, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, rheological analysis, and energy-dispersive X-ray spectrometry, along with measuring % gel content, pH at point of zero charge (pH(PZC)), and % graft ratio. The thermodynamically spontaneous chemisorption has been inferred from FTIR, XPS, fitting of kinetics data to pseudo-second-order model, and activation energies. The chemisorption data have exhibited excellent fitting to the Langmuir isotherm model. For Sr(II), Hg(II), and Cu(II), ACs were 1940.24/1748.36, 1759.50/1848.03, and 1903.64/1781.63 mg g(–1), respectively, at 293 K, 0.02 g of GGTI-g-TetraP1/2, and initial concentration of M(II) = 500–1000 ppm. American Chemical Society 2018-09-06 /pmc/articles/PMC6644869/ /pubmed/31459187 http://dx.doi.org/10.1021/acsomega.8b01218 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Mondal, Himarati
Karmakar, Mrinmoy
Dutta, Arnab
Mahapatra, Manas
Deb, Mousumi
Mitra, Madhushree
Roy, Joy Sankar Deb
Roy, Chandan
Chattopadhyay, Pijush Kanti
Singha, Nayan Ranjan
Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions
title Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions
title_full Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions
title_fullStr Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions
title_full_unstemmed Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions
title_short Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions
title_sort tetrapolymer network hydrogels via gum ghatti-grafted and n–h/c–h-activated allocation of monomers for composition-dependent superadsorption of metal ions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644869/
https://www.ncbi.nlm.nih.gov/pubmed/31459187
http://dx.doi.org/10.1021/acsomega.8b01218
work_keys_str_mv AT mondalhimarati tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT karmakarmrinmoy tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT duttaarnab tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT mahapatramanas tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT debmousumi tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT mitramadhushree tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT royjoysankardeb tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT roychandan tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT chattopadhyaypijushkanti tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions
AT singhanayanranjan tetrapolymernetworkhydrogelsviagumghattigraftedandnhchactivatedallocationofmonomersforcompositiondependentsuperadsorptionofmetalions