Cargando…

Au-CGKRK Nanoconjugates for Combating Cancer through T-Cell-Driven Therapeutic RNA Interference

[Image: see text] Numerous prior studies on fighting cancer have been based on using inhibitors of JAK-STAT pathway (signal transducer and activator of transcription 3 (STAT3) inhibitor in particular), a signaling pathway responsible for progression of many types of cancer cells. However, recent stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Gulla, Suresh Kumar, Kotcherlakota, Rajesh, Nimushakavi, Sahithi, Nimmu, Narendra Varma, Khalid, Sara, Patra, Chitta Ranjan, Chaudhuri, Arabinda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644890/
https://www.ncbi.nlm.nih.gov/pubmed/31458997
http://dx.doi.org/10.1021/acsomega.8b01051
Descripción
Sumario:[Image: see text] Numerous prior studies on fighting cancer have been based on using inhibitors of JAK-STAT pathway (signal transducer and activator of transcription 3 (STAT3) inhibitor in particular), a signaling pathway responsible for progression of many types of cancer cells. However, recent studies have shown that STAT3 activation leads to upregulation of program death receptor-ligand 1 (PD-L1, an immune checkpoint protein that plays a major role behind evasion of immune systems by growing tumors) expression levels in tumor cells, leading to enhanced immune suppression. This is why global efforts are being witnessed in combating cancer through use of immune checkpoint inhibitors. Herein, we report on the design, synthesis, physicochemical characterizations, and bioactivity evaluation of novel tumor- and tumor-vasculature-targeting noncytotoxic Au-CGKRK nanoconjugates (17–80 nm) for combating tumor. Using a syngeneic mouse tumor model, we show that intraperitoneal (i.p.) administration of the Au-CGKRK nanoparticles (NPs) complexed with both PD-L1siRNA (the immune checkpoint inhibitor) and STAT3siRNA (the JAK-STAT pathway inhibitor) results in significant (>70%) enhancement in overall survivability (OS) in melanoma-bearing mice (n = 5) when compared to the OS in the untreated mice group. The expression levels of CD8 and CD4 proteins in the tumor lysates of differently treated mice groups (by Western blotting) are consistent with the observed OS enhancement being a T-cell-driven process. Biodistribution study using near-infrared dye-loaded Au-CGKRK nanoconjugates revealed selective accumulation of the dye in mouse tumor. Notably, the overall survival benefits were significantly less (∼35%) when melanoma-bearing mice were treated (i.p.) with Au-CGKRK NPs complexed with only PD-L1siRNA or with STAT3siRNA alone. The presently described Au-CGKRK nanoconjugates are expected to find future use in therapeutic RNA-interference-based cancer immunotherapy.