Cargando…

Tuning of Catalytic Property Controlled by the Molecular Dimension of Palladium–Schiff Base Complexes Encapsulated in Zeolite Y

[Image: see text] Planar palladium–Schiff base complexes are synthesized, maintaining the order of their molecular dimensions as PdL1 < PdL2 < PdL3 < PdL4 < PdL5 in free state, as well as encapsulated in zeolite Y, where L1: N,N′-bis(salicylidene)ethylenediamine and L2, L3, L4, and L5 ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Choudhary, Archana, Kumari, Susheela, Ray, Saumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644941/
https://www.ncbi.nlm.nih.gov/pubmed/31457259
http://dx.doi.org/10.1021/acsomega.7b01071
Descripción
Sumario:[Image: see text] Planar palladium–Schiff base complexes are synthesized, maintaining the order of their molecular dimensions as PdL1 < PdL2 < PdL3 < PdL4 < PdL5 in free state, as well as encapsulated in zeolite Y, where L1: N,N′-bis(salicylidene)ethylenediamine and L2, L3, L4, and L5 are derivatives of L1. All encapsulated complexes have shown better catalytic activity for the sulfoxidation of methyl phenyl sulfide in comparison to their homogeneous counter parts. These hybrid systems are characterized with the help of different characterization techniques such as X-ray diffraction analysis, scanning electron microscopy–energy-dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared, and UV–visible spectroscopy; all of these studies have suggested that the largest complex deviates by the maximum from its free-state properties, and a radical change in the reactivity of the complex is observed.