Cargando…
Facile Synthesis of PtCu Alloy/Graphene Oxide Hybrids as Improved Electrocatalysts for Alkaline Fuel Cells
[Image: see text] Morphology-controllable preparation of Pt-based nanoalloys supporting on carbonaceous materials is a potential strategy to enhance the catalytic properties for oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR); they are recognized as irreplaceable electrode react...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645027/ https://www.ncbi.nlm.nih.gov/pubmed/31459004 http://dx.doi.org/10.1021/acsomega.8b01347 |
Sumario: | [Image: see text] Morphology-controllable preparation of Pt-based nanoalloys supporting on carbonaceous materials is a potential strategy to enhance the catalytic properties for oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR); they are recognized as irreplaceable electrode reactions in proton-exchange membrane ethanol fuel cells. Herein, we exhibit a facile, one-step synthesis method to directly prepare composition-tunable PtCu alloy/graphene oxide (GO) hybrids. The structure of the as-synthesized PtCu alloy/GO hybrids has been analyzed using transmission electron microscopy, high resolution transmission electron microscopy, energy-dispersive X-ray, X-ray diffraction, inductively coupled plasma, and X-ray photoelectron spectroscopy. In the PtCu alloy/GO hybrids, the PtCu alloy nanoparticles well disperse on GO, and the size is below 5.0 nm. The catalysis for ORR and EOR of the as-synthesized PtCu/GO hybrids has been evaluated in alkaline solution. Compared to commercial Pt/C, the PtCu/GO hybrids exhibit much higher mass activity and stability. The mass activities toward ORR/EOR on Pt(75.4)Cu(24.6)/GO hybrids are 5.3/2.36 times higher than the commercial Pt/C. This study proves that the as-synthesized PtCu/GO hybrids can be used as improved catalysts for ORR and EOR in alkaline medium. |
---|