Cargando…

Toward Subtle Manipulation of Fine Dendritic β-Nucleating Agent in Polypropylene

[Image: see text] Dendritic β-nucleating agent (β-NA) can readily manipulate the formation of dendritic β-crystal with a unique toughening effect on polypropylene (PP) to drastically enhance the ductility. However, by the current method, the geometric size is too large to fully perform the nucleatin...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yijun, Wen, Xinyu, Nie, Min, Wang, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645093/
https://www.ncbi.nlm.nih.gov/pubmed/31457299
http://dx.doi.org/10.1021/acsomega.7b01036
Descripción
Sumario:[Image: see text] Dendritic β-nucleating agent (β-NA) can readily manipulate the formation of dendritic β-crystal with a unique toughening effect on polypropylene (PP) to drastically enhance the ductility. However, by the current method, the geometric size is too large to fully perform the nucleating efficiency. In this study, by comparatively investigating the effect of molecular weight of PP and diffusion of β-NAs in a PP melt, we proposed a novel carrier strategy that selective enrichment of β-NAs in a PP carrier was followed by directed migration into polymer matrix. Accordingly, the growth of NAs was controlled by the release from the PP carrier, which decreased the available amount of β-NAs during the growth stage. In this case, the viscosity difference between PP carrier and matrix determined the interfacial movement of β-NAs. When the PP carrier and matrix had same molecular weight, the diffusion and release became favorable to facilitate the formation of the dense and fine dendritic aggregates. As a result, the relative content of β-crystals reached 92%, with a drastic increase of ∼82% in the optimal condition compared to the directed compounded PP/β-NAs sample. This study can open a new avenue to tailor the topologies of β-NAs and the ensuing β-crystals for high-performance PP products.