Cargando…
Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition
[Image: see text] Interfaces combining polydopamine (PDA) and nanoparticles have been widely utilized for fabricating hybrid colloidal particles, thin films, and membranes for applications spanning biosensing, drug delivery, heavy metal detection, antifouling membranes, and lithium ion batteries. Ho...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645287/ https://www.ncbi.nlm.nih.gov/pubmed/31459174 http://dx.doi.org/10.1021/acsomega.8b00864 |
_version_ | 1783437431463215104 |
---|---|
author | DeStefano, Audra Yin, Jiashi Kraus, Theodore J. Parkinson, Bruce A. Li-Oakey, Katie Dongmei |
author_facet | DeStefano, Audra Yin, Jiashi Kraus, Theodore J. Parkinson, Bruce A. Li-Oakey, Katie Dongmei |
author_sort | DeStefano, Audra |
collection | PubMed |
description | [Image: see text] Interfaces combining polydopamine (PDA) and nanoparticles have been widely utilized for fabricating hybrid colloidal particles, thin films, and membranes for applications spanning biosensing, drug delivery, heavy metal detection, antifouling membranes, and lithium ion batteries. However, fundamental understanding of the interaction between PDA and nanoparticles is still limited, especially the impact of PDA on nanoparticle nucleation and growth. In this work, PDA is used to generate functional bonding sites for depositing titanium dioxide (TiO(2)) via atomic layer deposition (ALD) onto a nanoporous polymer substrate for a range of ALD cycles (<100). The resulting hybrid membranes are systematically characterized using water contact angle, scanning electron microscopy, atomic force microscopy, nitrogen adsorption and desorption, and X-ray photoelectron spectroscopy (XPS). An intriguing nonlinear relationship was observed between the number of ALD cycles and changes in surface properties (water contact angle and surface roughness). Together with XPS study, those changes in surface properties were exploited to probe the nanoparticle nucleation and growth process on complex PDA-coated porous polymer substrates. Molecular level understanding of inorganic and polymer material interfaces will shed light on fine-tuning nanoparticle-modified polymeric membrane materials. |
format | Online Article Text |
id | pubmed-6645287 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66452872019-08-27 Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition DeStefano, Audra Yin, Jiashi Kraus, Theodore J. Parkinson, Bruce A. Li-Oakey, Katie Dongmei ACS Omega [Image: see text] Interfaces combining polydopamine (PDA) and nanoparticles have been widely utilized for fabricating hybrid colloidal particles, thin films, and membranes for applications spanning biosensing, drug delivery, heavy metal detection, antifouling membranes, and lithium ion batteries. However, fundamental understanding of the interaction between PDA and nanoparticles is still limited, especially the impact of PDA on nanoparticle nucleation and growth. In this work, PDA is used to generate functional bonding sites for depositing titanium dioxide (TiO(2)) via atomic layer deposition (ALD) onto a nanoporous polymer substrate for a range of ALD cycles (<100). The resulting hybrid membranes are systematically characterized using water contact angle, scanning electron microscopy, atomic force microscopy, nitrogen adsorption and desorption, and X-ray photoelectron spectroscopy (XPS). An intriguing nonlinear relationship was observed between the number of ALD cycles and changes in surface properties (water contact angle and surface roughness). Together with XPS study, those changes in surface properties were exploited to probe the nanoparticle nucleation and growth process on complex PDA-coated porous polymer substrates. Molecular level understanding of inorganic and polymer material interfaces will shed light on fine-tuning nanoparticle-modified polymeric membrane materials. American Chemical Society 2018-09-05 /pmc/articles/PMC6645287/ /pubmed/31459174 http://dx.doi.org/10.1021/acsomega.8b00864 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | DeStefano, Audra Yin, Jiashi Kraus, Theodore J. Parkinson, Bruce A. Li-Oakey, Katie Dongmei Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition |
title | Elucidation of Titanium Dioxide Nucleation and Growth
on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate
via Low-Temperature Atomic Layer Deposition |
title_full | Elucidation of Titanium Dioxide Nucleation and Growth
on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate
via Low-Temperature Atomic Layer Deposition |
title_fullStr | Elucidation of Titanium Dioxide Nucleation and Growth
on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate
via Low-Temperature Atomic Layer Deposition |
title_full_unstemmed | Elucidation of Titanium Dioxide Nucleation and Growth
on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate
via Low-Temperature Atomic Layer Deposition |
title_short | Elucidation of Titanium Dioxide Nucleation and Growth
on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate
via Low-Temperature Atomic Layer Deposition |
title_sort | elucidation of titanium dioxide nucleation and growth
on a polydopamine-modified nanoporous polyvinylidene fluoride substrate
via low-temperature atomic layer deposition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645287/ https://www.ncbi.nlm.nih.gov/pubmed/31459174 http://dx.doi.org/10.1021/acsomega.8b00864 |
work_keys_str_mv | AT destefanoaudra elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition AT yinjiashi elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition AT kraustheodorej elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition AT parkinsonbrucea elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition AT lioakeykatiedongmei elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition |