Cargando…

Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition

[Image: see text] Interfaces combining polydopamine (PDA) and nanoparticles have been widely utilized for fabricating hybrid colloidal particles, thin films, and membranes for applications spanning biosensing, drug delivery, heavy metal detection, antifouling membranes, and lithium ion batteries. Ho...

Descripción completa

Detalles Bibliográficos
Autores principales: DeStefano, Audra, Yin, Jiashi, Kraus, Theodore J., Parkinson, Bruce A., Li-Oakey, Katie Dongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645287/
https://www.ncbi.nlm.nih.gov/pubmed/31459174
http://dx.doi.org/10.1021/acsomega.8b00864
_version_ 1783437431463215104
author DeStefano, Audra
Yin, Jiashi
Kraus, Theodore J.
Parkinson, Bruce A.
Li-Oakey, Katie Dongmei
author_facet DeStefano, Audra
Yin, Jiashi
Kraus, Theodore J.
Parkinson, Bruce A.
Li-Oakey, Katie Dongmei
author_sort DeStefano, Audra
collection PubMed
description [Image: see text] Interfaces combining polydopamine (PDA) and nanoparticles have been widely utilized for fabricating hybrid colloidal particles, thin films, and membranes for applications spanning biosensing, drug delivery, heavy metal detection, antifouling membranes, and lithium ion batteries. However, fundamental understanding of the interaction between PDA and nanoparticles is still limited, especially the impact of PDA on nanoparticle nucleation and growth. In this work, PDA is used to generate functional bonding sites for depositing titanium dioxide (TiO(2)) via atomic layer deposition (ALD) onto a nanoporous polymer substrate for a range of ALD cycles (<100). The resulting hybrid membranes are systematically characterized using water contact angle, scanning electron microscopy, atomic force microscopy, nitrogen adsorption and desorption, and X-ray photoelectron spectroscopy (XPS). An intriguing nonlinear relationship was observed between the number of ALD cycles and changes in surface properties (water contact angle and surface roughness). Together with XPS study, those changes in surface properties were exploited to probe the nanoparticle nucleation and growth process on complex PDA-coated porous polymer substrates. Molecular level understanding of inorganic and polymer material interfaces will shed light on fine-tuning nanoparticle-modified polymeric membrane materials.
format Online
Article
Text
id pubmed-6645287
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66452872019-08-27 Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition DeStefano, Audra Yin, Jiashi Kraus, Theodore J. Parkinson, Bruce A. Li-Oakey, Katie Dongmei ACS Omega [Image: see text] Interfaces combining polydopamine (PDA) and nanoparticles have been widely utilized for fabricating hybrid colloidal particles, thin films, and membranes for applications spanning biosensing, drug delivery, heavy metal detection, antifouling membranes, and lithium ion batteries. However, fundamental understanding of the interaction between PDA and nanoparticles is still limited, especially the impact of PDA on nanoparticle nucleation and growth. In this work, PDA is used to generate functional bonding sites for depositing titanium dioxide (TiO(2)) via atomic layer deposition (ALD) onto a nanoporous polymer substrate for a range of ALD cycles (<100). The resulting hybrid membranes are systematically characterized using water contact angle, scanning electron microscopy, atomic force microscopy, nitrogen adsorption and desorption, and X-ray photoelectron spectroscopy (XPS). An intriguing nonlinear relationship was observed between the number of ALD cycles and changes in surface properties (water contact angle and surface roughness). Together with XPS study, those changes in surface properties were exploited to probe the nanoparticle nucleation and growth process on complex PDA-coated porous polymer substrates. Molecular level understanding of inorganic and polymer material interfaces will shed light on fine-tuning nanoparticle-modified polymeric membrane materials. American Chemical Society 2018-09-05 /pmc/articles/PMC6645287/ /pubmed/31459174 http://dx.doi.org/10.1021/acsomega.8b00864 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle DeStefano, Audra
Yin, Jiashi
Kraus, Theodore J.
Parkinson, Bruce A.
Li-Oakey, Katie Dongmei
Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition
title Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition
title_full Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition
title_fullStr Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition
title_full_unstemmed Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition
title_short Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition
title_sort elucidation of titanium dioxide nucleation and growth on a polydopamine-modified nanoporous polyvinylidene fluoride substrate via low-temperature atomic layer deposition
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645287/
https://www.ncbi.nlm.nih.gov/pubmed/31459174
http://dx.doi.org/10.1021/acsomega.8b00864
work_keys_str_mv AT destefanoaudra elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition
AT yinjiashi elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition
AT kraustheodorej elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition
AT parkinsonbrucea elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition
AT lioakeykatiedongmei elucidationoftitaniumdioxidenucleationandgrowthonapolydopaminemodifiednanoporouspolyvinylidenefluoridesubstratevialowtemperatureatomiclayerdeposition