Cargando…

Mechanical Stability of Lipid Membranes Decorated with Dextran Sulfate

[Image: see text] Lipid vesicles decorated with polysaccharides have been proposed as vehicles for drug delivery because the polymers confer to the vesicles an enhanced stability, increasing the probability of the drug for reaching the target cell. Here, we first test the affinity of dextran sulfate...

Descripción completa

Detalles Bibliográficos
Autores principales: Cámara, Candelaria I., Lurgo, Florencia E., Fanani, Maria Laura, Wilke, Natalia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645315/
https://www.ncbi.nlm.nih.gov/pubmed/31459263
http://dx.doi.org/10.1021/acsomega.8b01537
Descripción
Sumario:[Image: see text] Lipid vesicles decorated with polysaccharides have been proposed as vehicles for drug delivery because the polymers confer to the vesicles an enhanced stability, increasing the probability of the drug for reaching the target cell. Here, we first test the affinity of dextran sulfate (DS) for two different vesicle composition, and afterward, we study the effect of DS on the liposome mechanical properties. We found that DS binds to both tested membrane compositions. The interaction of DS with the anionic membranes studied here is mediated by the metal ions present in the aqueous solution (Na(+) and Ca(2+)), being higher in the presence of Ca(2+). Binding occurs preferentially in regions of closely packed lipids. Strikingly, DS did not affect the stability against detergent and the membrane rigidity of none of the vesicles. Thus, the proposed stability increase induced by this kind of polymers in drug delivery systems is not related with a modulation of the membrane thermodynamic properties but to other biochemical factors.