Cargando…
Lepidocrocite-Type Titanate Formation from Isostructural Prestructures under Hydrothermal Reactions: Observation by Synchrotron X-ray Total Scattering Analyses
[Image: see text] The formation of titanium dioxides, such as rutile and anatase, is known to proceed through the formation of a lepidocrocite-type layered structure under hydrothermal conditions, but the nucleation of this intermediate is still not understood well. Here, the nucleation of lepidocro...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645418/ https://www.ncbi.nlm.nih.gov/pubmed/31459019 http://dx.doi.org/10.1021/acsomega.8b01693 |
Sumario: | [Image: see text] The formation of titanium dioxides, such as rutile and anatase, is known to proceed through the formation of a lepidocrocite-type layered structure under hydrothermal conditions, but the nucleation of this intermediate is still not understood well. Here, the nucleation of lepidocrocite-type layered titanates under hydrothermal conditions is observed by tracking the structural changes by in situ time-resolved pair distribution function analyses. We found that titanate clusters or corrugated layered prestructures having <1 nm domains with lepidocrocite-type connectivity were formed even before thermal treatment in alkaline aqueous solution. Upon thermal treatment, a two-dimensional layered structure grew directly from the prestructure, not from the amorphous polymeric hydroxide dissolved in the solution. Thus, we conclude that the formation of the lepidocrocite-like prestructure is the key for forming a layered titanate under hydrothermal conditions. |
---|