Cargando…

Synthesis of Fluoranthene Derivatives via Tandem Suzuki–Miyaura and Intramolecular C–H Arylation Reactions under Both Homogeneous and Heterogeneous Catalytic Conditions

[Image: see text] A catalytic method for the synthesis of substituted fluoranthenes that operates via tandem Suzuki–Miyaura and intramolecular C–H arylation reactions is reported. The overall reaction sequence works effectively with homogeneous catalysis using Pd(dppf)Cl(2) as well as heterogeneous...

Descripción completa

Detalles Bibliográficos
Autores principales: Pal, Sujit, Metin, Önder, Türkmen, Yunus E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645568/
https://www.ncbi.nlm.nih.gov/pubmed/31457400
http://dx.doi.org/10.1021/acsomega.7b01566
Descripción
Sumario:[Image: see text] A catalytic method for the synthesis of substituted fluoranthenes that operates via tandem Suzuki–Miyaura and intramolecular C–H arylation reactions is reported. The overall reaction sequence works effectively with homogeneous catalysis using Pd(dppf)Cl(2) as well as heterogeneous catalysis using reduced graphene oxide (rGO)-CuPd nanocatalysts with low catalyst loadings. High functional group tolerance is observed under both catalytic conditions where arylboronic acids and esters having electron-withdrawing and electron-donating substituents afforded fluoranthene products in good yields (up to 78%). Moreover, the rGO-CuPd nanocatalysts are demonstrated to be reusable by preserving almost 90% of their initial activity after the third cycle.