Cargando…
Novel bimetallic Cu/Ni core-shell NPs and nitrogen doped GQDs composites applied in glucose in vitro detection
In present work, a highly sensitive biosensor with high selectivity for glucose monitoring is developed based on novel nano-composites of nitrogen doped graphene quantum dots (N-GQDs) and a novel bimetallic Cu/Ni core-shell nanoparticles (CSNPs) (Cu@Ni CSNPs/N-GQDs NCs). With the tuned electronic pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645669/ https://www.ncbi.nlm.nih.gov/pubmed/31329618 http://dx.doi.org/10.1371/journal.pone.0220005 |
Sumario: | In present work, a highly sensitive biosensor with high selectivity for glucose monitoring is developed based on novel nano-composites of nitrogen doped graphene quantum dots (N-GQDs) and a novel bimetallic Cu/Ni core-shell nanoparticles (CSNPs) (Cu@Ni CSNPs/N-GQDs NCs). With the tuned electronic properties, N-GQDs helped bimetallic core-shell structure nanomaterials from aggregation, and separate the charges generated at the interface. This novel nano-composites also have the good electrical conductivity of N-GQDs, catalyst property of Cu/Ni bimetallic nano composite, Cu@Ni core-shell structure and the synergistic effect of the interaction between bimetallic nano composite and N-GQDs. While modified the electrode with this novel nano-composites, the sensor’ linear range is 0.09 ~ 1 mM, and the limit of detection (LOD) is 1.5 μM (S/N = 3) with a high sensitivity of 660 μA mM(-1) cm(-2), and rapid response time (3 s). Its’ LOD is more than 74 times lower than the traditional Cu@Ni CSNPs modified working electrode. It also has higher sensitivity and wider linear range. This indicates the great potential of applying this kind of nano composites in electrode modification. |
---|