Cargando…

A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data

Genome-wide association studies (GWAS) have identified >100 schizophrenia (SCZ)-associated loci, but using these findings to illuminate disease biology remains a challenge. Here, we present integrative RIsk Gene Selector (iRIGS), a Bayesian framework that integrates multi-omics data and gene netw...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Quan, Chen, Rui, Cheng, Feixiong, Wei, Qiang, Ji, Ying, Yang, Hai, Zhong, Xue, Tao, Ran, Wen, Zhexing, Sutcliffe, James S., Liu, Chunyu, Cook, Edwin H., Cox, Nancy J., Li, Bingshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646046/
https://www.ncbi.nlm.nih.gov/pubmed/30988527
http://dx.doi.org/10.1038/s41593-019-0382-7
_version_ 1783437524880850944
author Wang, Quan
Chen, Rui
Cheng, Feixiong
Wei, Qiang
Ji, Ying
Yang, Hai
Zhong, Xue
Tao, Ran
Wen, Zhexing
Sutcliffe, James S.
Liu, Chunyu
Cook, Edwin H.
Cox, Nancy J.
Li, Bingshan
author_facet Wang, Quan
Chen, Rui
Cheng, Feixiong
Wei, Qiang
Ji, Ying
Yang, Hai
Zhong, Xue
Tao, Ran
Wen, Zhexing
Sutcliffe, James S.
Liu, Chunyu
Cook, Edwin H.
Cox, Nancy J.
Li, Bingshan
author_sort Wang, Quan
collection PubMed
description Genome-wide association studies (GWAS) have identified >100 schizophrenia (SCZ)-associated loci, but using these findings to illuminate disease biology remains a challenge. Here, we present integrative RIsk Gene Selector (iRIGS), a Bayesian framework that integrates multi-omics data and gene networks to infer risk genes in GWAS loci. By applying iRIGS to SCZ GWAS data, we predicted a set of high-confidence risk genes (HRGs), most of which are not the nearest genes to the GWAS index variants. HRGs account for a significantly enriched heritability estimated by stratified LD-score regression. Moreover, HRGs are predominantly expressed in brain tissues, especially prenatally, and are enriched for targets of approved drugs, suggesting opportunities to reposition existing drugs for SCZ. Thus, iRIGS can leverage accumulating functional genomics and GWAS data to advance understanding of SCZ etiology and potential therapeutics.
format Online
Article
Text
id pubmed-6646046
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-66460462019-10-15 A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data Wang, Quan Chen, Rui Cheng, Feixiong Wei, Qiang Ji, Ying Yang, Hai Zhong, Xue Tao, Ran Wen, Zhexing Sutcliffe, James S. Liu, Chunyu Cook, Edwin H. Cox, Nancy J. Li, Bingshan Nat Neurosci Article Genome-wide association studies (GWAS) have identified >100 schizophrenia (SCZ)-associated loci, but using these findings to illuminate disease biology remains a challenge. Here, we present integrative RIsk Gene Selector (iRIGS), a Bayesian framework that integrates multi-omics data and gene networks to infer risk genes in GWAS loci. By applying iRIGS to SCZ GWAS data, we predicted a set of high-confidence risk genes (HRGs), most of which are not the nearest genes to the GWAS index variants. HRGs account for a significantly enriched heritability estimated by stratified LD-score regression. Moreover, HRGs are predominantly expressed in brain tissues, especially prenatally, and are enriched for targets of approved drugs, suggesting opportunities to reposition existing drugs for SCZ. Thus, iRIGS can leverage accumulating functional genomics and GWAS data to advance understanding of SCZ etiology and potential therapeutics. 2019-04-15 2019-05 /pmc/articles/PMC6646046/ /pubmed/30988527 http://dx.doi.org/10.1038/s41593-019-0382-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Wang, Quan
Chen, Rui
Cheng, Feixiong
Wei, Qiang
Ji, Ying
Yang, Hai
Zhong, Xue
Tao, Ran
Wen, Zhexing
Sutcliffe, James S.
Liu, Chunyu
Cook, Edwin H.
Cox, Nancy J.
Li, Bingshan
A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
title A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
title_full A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
title_fullStr A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
title_full_unstemmed A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
title_short A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
title_sort bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia gwas data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646046/
https://www.ncbi.nlm.nih.gov/pubmed/30988527
http://dx.doi.org/10.1038/s41593-019-0382-7
work_keys_str_mv AT wangquan abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT chenrui abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT chengfeixiong abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT weiqiang abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT jiying abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT yanghai abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT zhongxue abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT taoran abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT wenzhexing abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT sutcliffejamess abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT liuchunyu abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT cookedwinh abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT coxnancyj abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT libingshan abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT wangquan bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT chenrui bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT chengfeixiong bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT weiqiang bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT jiying bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT yanghai bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT zhongxue bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT taoran bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT wenzhexing bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT sutcliffejamess bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT liuchunyu bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT cookedwinh bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT coxnancyj bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata
AT libingshan bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata