Cargando…
A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
Genome-wide association studies (GWAS) have identified >100 schizophrenia (SCZ)-associated loci, but using these findings to illuminate disease biology remains a challenge. Here, we present integrative RIsk Gene Selector (iRIGS), a Bayesian framework that integrates multi-omics data and gene netw...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646046/ https://www.ncbi.nlm.nih.gov/pubmed/30988527 http://dx.doi.org/10.1038/s41593-019-0382-7 |
_version_ | 1783437524880850944 |
---|---|
author | Wang, Quan Chen, Rui Cheng, Feixiong Wei, Qiang Ji, Ying Yang, Hai Zhong, Xue Tao, Ran Wen, Zhexing Sutcliffe, James S. Liu, Chunyu Cook, Edwin H. Cox, Nancy J. Li, Bingshan |
author_facet | Wang, Quan Chen, Rui Cheng, Feixiong Wei, Qiang Ji, Ying Yang, Hai Zhong, Xue Tao, Ran Wen, Zhexing Sutcliffe, James S. Liu, Chunyu Cook, Edwin H. Cox, Nancy J. Li, Bingshan |
author_sort | Wang, Quan |
collection | PubMed |
description | Genome-wide association studies (GWAS) have identified >100 schizophrenia (SCZ)-associated loci, but using these findings to illuminate disease biology remains a challenge. Here, we present integrative RIsk Gene Selector (iRIGS), a Bayesian framework that integrates multi-omics data and gene networks to infer risk genes in GWAS loci. By applying iRIGS to SCZ GWAS data, we predicted a set of high-confidence risk genes (HRGs), most of which are not the nearest genes to the GWAS index variants. HRGs account for a significantly enriched heritability estimated by stratified LD-score regression. Moreover, HRGs are predominantly expressed in brain tissues, especially prenatally, and are enriched for targets of approved drugs, suggesting opportunities to reposition existing drugs for SCZ. Thus, iRIGS can leverage accumulating functional genomics and GWAS data to advance understanding of SCZ etiology and potential therapeutics. |
format | Online Article Text |
id | pubmed-6646046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-66460462019-10-15 A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data Wang, Quan Chen, Rui Cheng, Feixiong Wei, Qiang Ji, Ying Yang, Hai Zhong, Xue Tao, Ran Wen, Zhexing Sutcliffe, James S. Liu, Chunyu Cook, Edwin H. Cox, Nancy J. Li, Bingshan Nat Neurosci Article Genome-wide association studies (GWAS) have identified >100 schizophrenia (SCZ)-associated loci, but using these findings to illuminate disease biology remains a challenge. Here, we present integrative RIsk Gene Selector (iRIGS), a Bayesian framework that integrates multi-omics data and gene networks to infer risk genes in GWAS loci. By applying iRIGS to SCZ GWAS data, we predicted a set of high-confidence risk genes (HRGs), most of which are not the nearest genes to the GWAS index variants. HRGs account for a significantly enriched heritability estimated by stratified LD-score regression. Moreover, HRGs are predominantly expressed in brain tissues, especially prenatally, and are enriched for targets of approved drugs, suggesting opportunities to reposition existing drugs for SCZ. Thus, iRIGS can leverage accumulating functional genomics and GWAS data to advance understanding of SCZ etiology and potential therapeutics. 2019-04-15 2019-05 /pmc/articles/PMC6646046/ /pubmed/30988527 http://dx.doi.org/10.1038/s41593-019-0382-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Wang, Quan Chen, Rui Cheng, Feixiong Wei, Qiang Ji, Ying Yang, Hai Zhong, Xue Tao, Ran Wen, Zhexing Sutcliffe, James S. Liu, Chunyu Cook, Edwin H. Cox, Nancy J. Li, Bingshan A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data |
title | A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data |
title_full | A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data |
title_fullStr | A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data |
title_full_unstemmed | A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data |
title_short | A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data |
title_sort | bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia gwas data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646046/ https://www.ncbi.nlm.nih.gov/pubmed/30988527 http://dx.doi.org/10.1038/s41593-019-0382-7 |
work_keys_str_mv | AT wangquan abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT chenrui abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT chengfeixiong abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT weiqiang abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT jiying abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT yanghai abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT zhongxue abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT taoran abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT wenzhexing abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT sutcliffejamess abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT liuchunyu abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT cookedwinh abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT coxnancyj abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT libingshan abayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT wangquan bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT chenrui bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT chengfeixiong bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT weiqiang bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT jiying bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT yanghai bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT zhongxue bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT taoran bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT wenzhexing bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT sutcliffejamess bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT liuchunyu bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT cookedwinh bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT coxnancyj bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata AT libingshan bayesianframeworkthatintegratesmultiomicsdataandgenenetworkspredictsriskgenesfromschizophreniagwasdata |