Cargando…
Investigating fouling at the pore-scale using a microfluidic membrane mimic filtration system
The work investigates fouling in a microfluidic membrane mimic (MMM) filtration system for foulants such as polystyrene particles and large polymeric molecules. Our MMM device consists of a staggered arrangement of pillars which enables real-time visualization and analysis of pore-scale phenomena. D...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646390/ https://www.ncbi.nlm.nih.gov/pubmed/31332215 http://dx.doi.org/10.1038/s41598-019-47096-6 |
Sumario: | The work investigates fouling in a microfluidic membrane mimic (MMM) filtration system for foulants such as polystyrene particles and large polymeric molecules. Our MMM device consists of a staggered arrangement of pillars which enables real-time visualization and analysis of pore-scale phenomena. Different fouling scenarios are investigated by conducting constant-pressure experiments. Fouling experiments are performed with three different types of foulants: polystyrene particle solution (colloidal fouling), polyacrylamide polymer solution (organic fouling) and a mixture of these two solutions (combined fouling). Four major categories of microscopic fouling are observed: cake filtration (upstream), pore blocking (inside the pores), colloidal aggregation (downstream) and colloidal streamer fouling (downstream). Our microfluidic experiments show that downstream colloidal aggregation and streamer fouling have a significant effect on overall membrane fouling which were not studied before. |
---|