Cargando…
RIL-Contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning
Deep-learning algorithms typically fall within the domain of supervised artificial intelligence and are designed to “learn” from annotated data. Deep-learning models require large, diverse training datasets for optimal model convergence. The effort to curate these datasets is widely regarded as a ba...
Autores principales: | Philbrick, Kenneth A., Weston, Alexander D., Akkus, Zeynettin, Kline, Timothy L., Korfiatis, Panagiotis, Sakinis, Tomas, Kostandy, Petro, Boonrod, Arunnit, Zeinoddini, Atefeh, Takahashi, Naoki, Erickson, Bradley J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646456/ https://www.ncbi.nlm.nih.gov/pubmed/31089974 http://dx.doi.org/10.1007/s10278-019-00232-0 |
Ejemplares similares
-
Thyroid Nodule Size as a Predictor of Malignancy in Follicular and Hurthle Neoplasms
por: Boonrod, Arunnit, et al.
Publicado: (2021) -
Toolkits and Libraries for Deep Learning
por: Erickson, Bradley J., et al.
Publicado: (2017) -
Deep Learning in Radiology: Does One Size Fit All?
por: Erickson, Bradley J., et al.
Publicado: (2018) -
Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging
por: Akkus, Zeynettin, et al.
Publicado: (2015) -
Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning
por: Korfiatis, Panagiotis, et al.
Publicado: (2016)