Cargando…
Learning Domain-Invariant Representations of Histological Images
Histological images present high appearance variability due to inconsistent latent parameters related to the preparation and scanning procedure of histological slides, as well as the inherent biological variability of tissues. Machine-learning models are trained with images from a limited set of dom...
Autores principales: | Lafarge, Maxime W., Pluim, Josien P. W., Eppenhof, Koen A. J., Veta, Mitko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646468/ https://www.ncbi.nlm.nih.gov/pubmed/31380377 http://dx.doi.org/10.3389/fmed.2019.00162 |
Ejemplares similares
-
Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
por: Veta, Mitko, et al.
Publicado: (2013) -
Quantifying Graft Detachment after Descemet's Membrane Endothelial Keratoplasty with Deep Convolutional Neural Networks
por: Heslinga, Friso G., et al.
Publicado: (2020) -
Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
por: Veta, Mitko, et al.
Publicado: (2016) -
Deep learning-based grading of ductal carcinoma in situ in breast histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2021) -
Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2022)