Cargando…
Beyond Human Perception: Sexual Dimorphism in Hand and Wrist Radiographs Is Discernible by a Deep Learning Model
Despite the well-established impact of sex and sex hormones on bone structure and density, there has been limited description of sexual dimorphism in the hand and wrist in the literature. We developed a deep convolutional neural network (CNN) model to predict sex based on hand radiographs of childre...
Autores principales: | Yune, Sehyo, Lee, Hyunkwang, Kim, Myeongchan, Tajmir, Shahein H., Gee, Michael S., Do, Synho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646498/ https://www.ncbi.nlm.nih.gov/pubmed/30478479 http://dx.doi.org/10.1007/s10278-018-0148-x |
Ejemplares similares
-
Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction
por: Lee, Hyunkwang, et al.
Publicado: (2019) -
Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies Muscle on Computed Tomography for Body Morphometric Analysis
por: Lee, Hyunkwang, et al.
Publicado: (2017) -
Fully Automated Deep Learning System for Bone Age Assessment
por: Lee, Hyunkwang, et al.
Publicado: (2017) -
The Fever Coach Mobile App for Participatory Influenza Surveillance in Children: Usability Study
por: Kim, Myeongchan, et al.
Publicado: (2019) -
Statistical shape analysis of hand and wrist in paediatric population on radiographs
por: KOÇ, Ural, et al.
Publicado: (2020)