Cargando…
Assessment of Critical Feeding Tube Malpositions on Radiographs Using Deep Learning
Assess the efficacy of deep convolutional neural networks (DCNNs) in detection of critical enteric feeding tube malpositions on radiographs. 5475 de-identified HIPAA compliant frontal view chest and abdominal radiographs were obtained, consisting of 174 x-rays of bronchial insertions and 5301 non-cr...
Autores principales: | Singh, Varun, Danda, Varun, Gorniak, Richard, Flanders, Adam, Lakhani, Paras |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646608/ https://www.ncbi.nlm.nih.gov/pubmed/31073816 http://dx.doi.org/10.1007/s10278-019-00229-9 |
Ejemplares similares
-
Malpositioned Lines and Tubes on Chest Radiograph – A Concise Pictorial Review
por: Sakthivel, Muthu Kumar, et al.
Publicado: (2020) -
Tracheobronchial malposition of fine bore feeding tube in patients with mechanical ventilation
por: Luo, Ru-Bin, et al.
Publicado: (2011) -
Malposition of a nasogastric tube
por: Raut, Monish S., et al.
Publicado: (2015) -
Rigid inflatable gastrostomy tube malposition
por: Murray, Timothy E., et al.
Publicado: (2017) -
Malposition of a nasogastric feeding tube into the right pleural space of a poststroke patient
por: Cao, Weili, et al.
Publicado: (2020)