Cargando…
The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method
In this research, we exploit an image-based deep learning framework to distinguish three major subtypes of renal cell carcinoma (clear cell, papillary, and chromophobe) using images acquired with computed tomography (CT). A biopsy-proven benchmarking dataset was built from 169 renal cancer cases. In...
Autores principales: | Han, Seokmin, Hwang, Sung Il, Lee, Hak Jong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646616/ https://www.ncbi.nlm.nih.gov/pubmed/31098732 http://dx.doi.org/10.1007/s10278-019-00230-2 |
Ejemplares similares
-
Feasibility of fully automated classification of whole slide images based on deep learning
por: Cho, Kyung-Ok, et al.
Publicado: (2020) -
Deep learning classification of lung cancer histology using CT images
por: Chaunzwa, Tafadzwa L., et al.
Publicado: (2021) -
Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images
por: Song, JaeYen, et al.
Publicado: (2022) -
Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
por: Lee, Ji Young, et al.
Publicado: (2020) -
Deep learning classification of lipid droplets in quantitative phase images
por: Sheneman, Luke, et al.
Publicado: (2021)