Cargando…
Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
Deep learning with convolutional neural networks (CNNs) has experienced tremendous growth in multiple healthcare applications and has been shown to have high accuracy in semantic segmentation of medical (e.g., radiology and pathology) images. However, a key barrier in the required training of CNNs i...
Autores principales: | Stember, J. N., Celik, H., Krupinski, E., Chang, P. D., Mutasa, S., Wood, B. J., Lignelli, A., Moonis, G., Schwartz, L. H., Jambawalikar, S., Bagci, U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646645/ https://www.ncbi.nlm.nih.gov/pubmed/31044392 http://dx.doi.org/10.1007/s10278-019-00220-4 |
Ejemplares similares
-
Comparing Object Recognition in Humans and Deep Convolutional Neural Networks—An Eye Tracking Study
por: van Dyck, Leonard Elia, et al.
Publicado: (2021) -
Strabismus Recognition Using Eye-Tracking Data and Convolutional Neural Networks
por: Chen, Zenghai, et al.
Publicado: (2018) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sadanandan, Sajith Kecheril, et al.
Publicado: (2017) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Polyp Segmentation with Fully Convolutional Deep Neural Networks—Extended Evaluation Study †
por: Guo, Yunbo, et al.
Publicado: (2020)