Cargando…
Lens Identification to Prevent Radiation-Induced Cataracts Using Convolutional Neural Networks
Exposure of the lenses to direct ionizing radiation during computed tomography (CT) examinations predisposes patients to cataract formation and should be avoided when possible. Avoiding such exposure requires positioning and other maneuvers by technologists that can be challenging. Continuous feedba...
Autor principal: | Filice, Ross |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646648/ https://www.ncbi.nlm.nih.gov/pubmed/31222558 http://dx.doi.org/10.1007/s10278-019-00242-y |
Ejemplares similares
-
Identification of Small Molecules for Prevention of Lens Epithelium-Derived Cataract Using Zebrafish
por: Taler, Kineret, et al.
Publicado: (2023) -
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
por: Nejedly, Petr, et al.
Publicado: (2018) -
Identification and Localization of Endotracheal Tube on Chest Radiographs Using a Cascaded Convolutional Neural Network Approach
por: Kara, Su, et al.
Publicado: (2021) -
Analysis of Cataract Surgery Instrument Identification Performance of Convolutional and Recurrent Neural Network Ensembles Leveraging BigCat
por: Matton, Nicholas, et al.
Publicado: (2022) -
Advancements in Cataract Detection: The Systematic Development of LeNet-Convolutional Neural Network Models
por: Ganokratanaa, Thittaporn, et al.
Publicado: (2023)