Cargando…
Deep Learning to Assess Long-term Mortality From Chest Radiographs
IMPORTANCE: Chest radiography is the most common diagnostic imaging test in medicine and may also provide information about longevity and prognosis. OBJECTIVE: To develop and test a convolutional neural network (CNN) (named CXR-risk) to predict long-term mortality, including noncancer death, from ch...
Autores principales: | Lu, Michael T., Ivanov, Alexander, Mayrhofer, Thomas, Hosny, Ahmed, Aerts, Hugo J. W. L., Hoffmann, Udo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646994/ https://www.ncbi.nlm.nih.gov/pubmed/31322692 http://dx.doi.org/10.1001/jamanetworkopen.2019.7416 |
Ejemplares similares
-
Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
por: Weiss, Jakob, et al.
Publicado: (2021) -
Deep learning to estimate lung disease mortality from chest radiographs
por: Weiss, Jakob, et al.
Publicado: (2023) -
Validation of a Deep Learning–Based Model to Predict Lung Cancer Risk Using Chest Radiographs and Electronic Medical Record Data
por: Raghu, Vineet K., et al.
Publicado: (2022) -
Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs
por: Yoo, Hyunsuk, et al.
Publicado: (2020) -
Cost-effectiveness Analysis of Anatomic vs Functional Index Testing in Patients With Low-Risk Stable Chest Pain
por: Karády, Júlia, et al.
Publicado: (2020)