Cargando…
The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model
In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647150/ https://www.ncbi.nlm.nih.gov/pubmed/31049662 http://dx.doi.org/10.1007/s00285-019-01366-z |
_version_ | 1783437666934587392 |
---|---|
author | Yamakou, Marius E. Tran, Tat Dat Duc, Luu Hoang Jost, Jürgen |
author_facet | Yamakou, Marius E. Tran, Tat Dat Duc, Luu Hoang Jost, Jürgen |
author_sort | Yamakou, Marius E. |
collection | PubMed |
description | In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259, 2013) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle. |
format | Online Article Text |
id | pubmed-6647150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-66471502019-08-06 The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model Yamakou, Marius E. Tran, Tat Dat Duc, Luu Hoang Jost, Jürgen J Math Biol Article In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259, 2013) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle. Springer Berlin Heidelberg 2019-05-02 2019 /pmc/articles/PMC6647150/ /pubmed/31049662 http://dx.doi.org/10.1007/s00285-019-01366-z Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Yamakou, Marius E. Tran, Tat Dat Duc, Luu Hoang Jost, Jürgen The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model |
title | The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model |
title_full | The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model |
title_fullStr | The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model |
title_full_unstemmed | The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model |
title_short | The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model |
title_sort | stochastic fitzhugh–nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647150/ https://www.ncbi.nlm.nih.gov/pubmed/31049662 http://dx.doi.org/10.1007/s00285-019-01366-z |
work_keys_str_mv | AT yamakoumariuse thestochasticfitzhughnagumoneuronmodelintheexcitableregimeembedsaleakyintegrateandfiremodel AT trantatdat thestochasticfitzhughnagumoneuronmodelintheexcitableregimeembedsaleakyintegrateandfiremodel AT ducluuhoang thestochasticfitzhughnagumoneuronmodelintheexcitableregimeembedsaleakyintegrateandfiremodel AT jostjurgen thestochasticfitzhughnagumoneuronmodelintheexcitableregimeembedsaleakyintegrateandfiremodel AT yamakoumariuse stochasticfitzhughnagumoneuronmodelintheexcitableregimeembedsaleakyintegrateandfiremodel AT trantatdat stochasticfitzhughnagumoneuronmodelintheexcitableregimeembedsaleakyintegrateandfiremodel AT ducluuhoang stochasticfitzhughnagumoneuronmodelintheexcitableregimeembedsaleakyintegrateandfiremodel AT jostjurgen stochasticfitzhughnagumoneuronmodelintheexcitableregimeembedsaleakyintegrateandfiremodel |