Cargando…
Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach
BACKGROUND: Despite the greater sensitivity of the new dengue clinical classification proposed by the World Health Organization (WHO) in 2009, there is a need for a better definition of warning signs and clinical progression of dengue cases. Classic statistical methods have been used to evaluate ris...
Autores principales: | Macedo Hair, Gleicy, Fonseca Nobre, Flávio, Brasil, Patrícia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647280/ https://www.ncbi.nlm.nih.gov/pubmed/31331271 http://dx.doi.org/10.1186/s12879-019-4282-y |
Ejemplares similares
-
Sensitivity and Specificity of the World Health Organization Dengue Classification Schemes for Severe Dengue Assessment in Children in Rio de Janeiro
por: Macedo, Gleicy A., et al.
Publicado: (2014) -
Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning
por: Shandilya, Sharad, et al.
Publicado: (2012) -
A student-centered approach for developing active learning: the construction of physical models as a teaching tool in medical physiology
por: Rezende-Filho, Flávio Moura, et al.
Publicado: (2014) -
Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach
por: Fraccaro, Paolo, et al.
Publicado: (2015) -
Novel biomarker genes which distinguish between smokers and chronic obstructive pulmonary disease patients with machine learning approach
por: Matsumura, Kazushi, et al.
Publicado: (2020)