Cargando…
Inhibition of Neointima Hyperplasia, Inflammation, and Reactive Oxygen Species in Balloon-Injured Arteries by HVJ Envelope Vector-Mediated Delivery of Superoxide Dismutase Gene
Extracellular superoxide dismutase (EC-SOD) has been implicated in regulation of vascular function but its underlying molecular mechanism is largely unknown. These two-step experiments investigate whether hemagglutinating virus of Japan envelope (HVJ-E) vector-mediated EC-SOD gene delivery might pro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647364/ https://www.ncbi.nlm.nih.gov/pubmed/30191468 http://dx.doi.org/10.1007/s12975-018-0660-9 |
Sumario: | Extracellular superoxide dismutase (EC-SOD) has been implicated in regulation of vascular function but its underlying molecular mechanism is largely unknown. These two-step experiments investigate whether hemagglutinating virus of Japan envelope (HVJ-E) vector-mediated EC-SOD gene delivery might protect against neointima formation, vascular inflammation, and reactive oxygen species (ROS) generation, and also explore cell growth signaling pathways. The first in-vitro experiment was performed to assess the transfection efficacy and safety of HVJ-E compared to lipofectamine®. Results revealed that HVJ-E has higher transfection efficiency and lower cytotoxicity than those of lipofectamine®. Another in-vivo study initially used balloon denudation to rat carotid artery, then delivered EC-SOD cDNA through the vector of HVJ-E. Arterial section with H&E staining from the animals 14 days after balloon injury showed a significant reduction of intima-to-media area ratio in EC-SOD transfected arteries when compared with control (empty vector-transfected arteries) (p < 0.05). Arterial tissue with EC-SOD gene delivery also exhibited lower levels of ROS, as assessed by fluorescent microphotography with dihydroethidium staining. Quantitative RT-PCR revealed that EC-SOD gene delivery significantly diminished mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β (p < 0.05 in all comparisons). An immunoblotting assay from vascular smooth muscle cell (VSMC) cultures showed that the EC-SOD transfected group attenuated the activation of MEK1/2, ERK1/2, and Akt signaling significantly. In conclusion, EC-SOD overexpression by HVJ-E vector inhibits neointima hyperplasia, inflammation, and ROS level triggered by balloon injury. The modulation of cell growth-signaling pathways by EC-SOD in VSMCs might play an important role in these inhibitory effects. |
---|