Cargando…
Optimized Stepwise Synthesis of the API Liraglutide Using BAL Resin and Pseudoprolines
[Image: see text] The number of peptide-based active pharmaceutical ingredients (APIs) has increased enormously in recent years. Furthermore, the emerging new peptide drug candidates are more complex and larger. For the industrial solid-phase synthesis of C-carboxylic acid peptides, the two main res...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648002/ https://www.ncbi.nlm.nih.gov/pubmed/31459957 http://dx.doi.org/10.1021/acsomega.9b00974 |
Sumario: | [Image: see text] The number of peptide-based active pharmaceutical ingredients (APIs) has increased enormously in recent years. Furthermore, the emerging new peptide drug candidates are more complex and larger. For the industrial solid-phase synthesis of C-carboxylic acid peptides, the two main resins available, Wang and chlorotrityl chloride (CTC), have a number of drawbacks. In this context, resins that form an amide bond with the first amino acid are more robust than Wang and CTC resins. Here, we address the use of the backbone (BAL) resin for the synthesis of the peptide liraglutide. The BAL resin, in conjunction with the use of pseudoprolines to avoid aggregation, allows the stepwise solid-phase synthesis of this API in excellent purity and yield. |
---|