Cargando…
Electrochemical Reactions of Iodine Molecules Encapsulated in Single-Walled Carbon Nanotubes
[Image: see text] We prepared iodine molecules encapsulated in single-walled carbon nanotubes (I@SWCNTs) by electro-oxidation of iodide ions with empty SWCNT electrode. Li-ion battery electrode properties of I@SWCNTs were investigated. It was found that the I@SWCNT sample can catch and release Li io...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648015/ https://www.ncbi.nlm.nih.gov/pubmed/31459492 http://dx.doi.org/10.1021/acsomega.8b03129 |
Sumario: | [Image: see text] We prepared iodine molecules encapsulated in single-walled carbon nanotubes (I@SWCNTs) by electro-oxidation of iodide ions with empty SWCNT electrode. Li-ion battery electrode properties of I@SWCNTs were investigated. It was found that the I@SWCNT sample can catch and release Li ions reversibly. We performed Raman measurements to reveal the Li-ion storage mechanism of I@SWCNT. It is plausible that chemical reactions of I(2) from/into LiI in SWCNTs occur during Li-ion charging/discharging of I@SWCNT. We also prepared the CsI@SWCNT sample to verify that alkali metal ions can be extracted from alkali metal halide in SWCNTs. The extraction of cesium ions from CsI@SWCNT was confirmed by Raman measurements. It was also found that I@SWCNT can work as a Li-ion battery electrode in solid electrolyte as well. |
---|