Cargando…

Large-Magnitude Transformable Liquid-Metal Composites

[Image: see text] Most of the existing robots would find it difficult to stretch and transform all parts of their body together due to rigid components and complex actuation mechanisms inside. Here, we presented a highly transformable liquid-metal composite (LMC) that is easy to change shape in larg...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hongzhang, Yao, Youyou, Wang, Xiangjiang, Sheng, Lei, Yang, Xiao-Hu, Cui, Yuntao, Zhang, Pengju, Rao, Wei, Guo, Rui, Liang, Shuting, Wu, Weiwei, Liu, Jing, He, Zhi-Zhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648024/
https://www.ncbi.nlm.nih.gov/pubmed/31459473
http://dx.doi.org/10.1021/acsomega.8b03466
Descripción
Sumario:[Image: see text] Most of the existing robots would find it difficult to stretch and transform all parts of their body together due to rigid components and complex actuation mechanisms inside. Here, we presented a highly transformable liquid-metal composite (LMC) that is easy to change shape in large magnitude and resume its original state again according to need. When subject to heating, part of the ethanol droplets embedded in the composite would change phase and then actuate. We demonstrate the flexible transformation of LMC-made octopus from a two-dimensional shape into several predictable three-dimensional shapes freely on a large scale (even up to 11 times its initial height) through remote wireless heating, which needs no sophisticated operating system at all. Further, several designed behaviors, such as movement of octopus and entangling objects of soft robots, are also realized. Theoretical analysis of the heating-induced liquid–vapor transition of the embedded ethanol droplet interprets the mechanisms involved. The present findings open a new way to fabricate functional transformable composites that would find significant applications in developing future generation soft robots.