Cargando…
Photodetection by Hot Electrons or Hot Holes: A Comparable Study on Physics and Performances
[Image: see text] Hot-carrier photodetectors are drawing significant attention; nevertheless, current researches focus mostly on the hot-electron devices, which normally show low quantum efficiencies. In contrast, hot-hole photodetectors usually have lower barriers and can provide a wide spectral ra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648420/ https://www.ncbi.nlm.nih.gov/pubmed/31459749 http://dx.doi.org/10.1021/acsomega.9b00267 |
_version_ | 1783437864558657536 |
---|---|
author | Sun, Qingxin Zhang, Cheng Shao, Weijia Li, Xiaofeng |
author_facet | Sun, Qingxin Zhang, Cheng Shao, Weijia Li, Xiaofeng |
author_sort | Sun, Qingxin |
collection | PubMed |
description | [Image: see text] Hot-carrier photodetectors are drawing significant attention; nevertheless, current researches focus mostly on the hot-electron devices, which normally show low quantum efficiencies. In contrast, hot-hole photodetectors usually have lower barriers and can provide a wide spectral range of photodetection and an improved photoconversion efficiency. Here, we report a comparable study of the hot-electron and hot-hole photodetectors from both underlying physics and optoelectronic performance perspectives. Taking the typical Au/Si Schottky contact as an example, we find obvious differences in the energy band diagram and the sequent hot-carrier generation/transport/emission processes, leading to very distinguished photodetection performances. Compared with hot electrons, hot holes show higher density below the Fermi level, the longer mean free path arising under the lower electron–electron and electron–phonon scatterings, a lower barrier height, and a lighter effective mass in Si, all of which lead to larger number of high-energy hot holes, larger transport probability, higher emission efficiency, and higher photoresponsivity. However, the low barrier height can cause poor performances of hot-hole device in dark current density and detectivity. The study elucidates the intrinsic physical differences and compares the key performance parameters of the hot-hole and hot-electron photodetections, with the objective of providing complete information for designing hot-carrier devices. |
format | Online Article Text |
id | pubmed-6648420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66484202019-08-27 Photodetection by Hot Electrons or Hot Holes: A Comparable Study on Physics and Performances Sun, Qingxin Zhang, Cheng Shao, Weijia Li, Xiaofeng ACS Omega [Image: see text] Hot-carrier photodetectors are drawing significant attention; nevertheless, current researches focus mostly on the hot-electron devices, which normally show low quantum efficiencies. In contrast, hot-hole photodetectors usually have lower barriers and can provide a wide spectral range of photodetection and an improved photoconversion efficiency. Here, we report a comparable study of the hot-electron and hot-hole photodetectors from both underlying physics and optoelectronic performance perspectives. Taking the typical Au/Si Schottky contact as an example, we find obvious differences in the energy band diagram and the sequent hot-carrier generation/transport/emission processes, leading to very distinguished photodetection performances. Compared with hot electrons, hot holes show higher density below the Fermi level, the longer mean free path arising under the lower electron–electron and electron–phonon scatterings, a lower barrier height, and a lighter effective mass in Si, all of which lead to larger number of high-energy hot holes, larger transport probability, higher emission efficiency, and higher photoresponsivity. However, the low barrier height can cause poor performances of hot-hole device in dark current density and detectivity. The study elucidates the intrinsic physical differences and compares the key performance parameters of the hot-hole and hot-electron photodetections, with the objective of providing complete information for designing hot-carrier devices. American Chemical Society 2019-03-29 /pmc/articles/PMC6648420/ /pubmed/31459749 http://dx.doi.org/10.1021/acsomega.9b00267 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Sun, Qingxin Zhang, Cheng Shao, Weijia Li, Xiaofeng Photodetection by Hot Electrons or Hot Holes: A Comparable Study on Physics and Performances |
title | Photodetection by Hot Electrons or Hot Holes: A Comparable
Study on Physics and Performances |
title_full | Photodetection by Hot Electrons or Hot Holes: A Comparable
Study on Physics and Performances |
title_fullStr | Photodetection by Hot Electrons or Hot Holes: A Comparable
Study on Physics and Performances |
title_full_unstemmed | Photodetection by Hot Electrons or Hot Holes: A Comparable
Study on Physics and Performances |
title_short | Photodetection by Hot Electrons or Hot Holes: A Comparable
Study on Physics and Performances |
title_sort | photodetection by hot electrons or hot holes: a comparable
study on physics and performances |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648420/ https://www.ncbi.nlm.nih.gov/pubmed/31459749 http://dx.doi.org/10.1021/acsomega.9b00267 |
work_keys_str_mv | AT sunqingxin photodetectionbyhotelectronsorhotholesacomparablestudyonphysicsandperformances AT zhangcheng photodetectionbyhotelectronsorhotholesacomparablestudyonphysicsandperformances AT shaoweijia photodetectionbyhotelectronsorhotholesacomparablestudyonphysicsandperformances AT lixiaofeng photodetectionbyhotelectronsorhotholesacomparablestudyonphysicsandperformances |