Cargando…
Sequential Fluorescence Recognition of Molybdenum(VI), Arsenite, and Phosphate Ions in a Ratiometric Manner: A Facile Approach for Discrimination of AsO(2)(–) and H(2)PO(4)(–)
[Image: see text] An amide-based smart probe (L) is explored for nanomolar detection of Mo(VI) ion in a ratiometric manner, involving hydrogen-bond-assisted chelation-enhanced fluorescence process through inhibition of photoinduced electron transfer process. The recognition of Mo(VI) is associated w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648501/ https://www.ncbi.nlm.nih.gov/pubmed/31460185 http://dx.doi.org/10.1021/acsomega.9b00377 |
_version_ | 1783437883519008768 |
---|---|
author | Banerjee, Mahuya Ta, Sabyasachi Ghosh, Milan Ghosh, Avijit Das, Debasis |
author_facet | Banerjee, Mahuya Ta, Sabyasachi Ghosh, Milan Ghosh, Avijit Das, Debasis |
author_sort | Banerjee, Mahuya |
collection | PubMed |
description | [Image: see text] An amide-based smart probe (L) is explored for nanomolar detection of Mo(VI) ion in a ratiometric manner, involving hydrogen-bond-assisted chelation-enhanced fluorescence process through inhibition of photoinduced electron transfer process. The recognition of Mo(VI) is associated with a 17-fold fluorescence enhancement and confirmed by single-crystal X-ray diffraction of the resulting Mo(VI) complex (M1). Further, M1 selectively recognizes arsenite through green emission of their adduct (C1) with an 81-fold fluorescence enhancement. Interestingly, dihydrogen phosphate causes dissociation of C1 back to free L having weak fluorescence. The methods are fast, highly selective, and allow their bare eye visualization at physiological pH. All of the interactions have been substantiated by time-dependent density functional theory calculations to rationalize their spectroscopic properties. The corresponding lowest detection limits are 1.5 × 10(–8) M for Mo(VI), 1.2 × 10(–10) M for AsO(2)(–), and 3.2 × 10(–6) M for H(2)PO(4)(–), whereas the respective association constants are 4.21 × 10(5) M(–1) for Mo(VI), 6.49 × 10(4) M(–1) for AsO(2)(–), and 2.11 × 10(5) M(–1) for H(2)PO(4)(–). The L is useful for efficient enrichment of Mo(VI) from aqueous solution, while M1 efficiently removes AsO(2)(–) from environmental samples by solid-phase extraction. |
format | Online Article Text |
id | pubmed-6648501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66485012019-08-27 Sequential Fluorescence Recognition of Molybdenum(VI), Arsenite, and Phosphate Ions in a Ratiometric Manner: A Facile Approach for Discrimination of AsO(2)(–) and H(2)PO(4)(–) Banerjee, Mahuya Ta, Sabyasachi Ghosh, Milan Ghosh, Avijit Das, Debasis ACS Omega [Image: see text] An amide-based smart probe (L) is explored for nanomolar detection of Mo(VI) ion in a ratiometric manner, involving hydrogen-bond-assisted chelation-enhanced fluorescence process through inhibition of photoinduced electron transfer process. The recognition of Mo(VI) is associated with a 17-fold fluorescence enhancement and confirmed by single-crystal X-ray diffraction of the resulting Mo(VI) complex (M1). Further, M1 selectively recognizes arsenite through green emission of their adduct (C1) with an 81-fold fluorescence enhancement. Interestingly, dihydrogen phosphate causes dissociation of C1 back to free L having weak fluorescence. The methods are fast, highly selective, and allow their bare eye visualization at physiological pH. All of the interactions have been substantiated by time-dependent density functional theory calculations to rationalize their spectroscopic properties. The corresponding lowest detection limits are 1.5 × 10(–8) M for Mo(VI), 1.2 × 10(–10) M for AsO(2)(–), and 3.2 × 10(–6) M for H(2)PO(4)(–), whereas the respective association constants are 4.21 × 10(5) M(–1) for Mo(VI), 6.49 × 10(4) M(–1) for AsO(2)(–), and 2.11 × 10(5) M(–1) for H(2)PO(4)(–). The L is useful for efficient enrichment of Mo(VI) from aqueous solution, while M1 efficiently removes AsO(2)(–) from environmental samples by solid-phase extraction. American Chemical Society 2019-06-21 /pmc/articles/PMC6648501/ /pubmed/31460185 http://dx.doi.org/10.1021/acsomega.9b00377 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Banerjee, Mahuya Ta, Sabyasachi Ghosh, Milan Ghosh, Avijit Das, Debasis Sequential Fluorescence Recognition of Molybdenum(VI), Arsenite, and Phosphate Ions in a Ratiometric Manner: A Facile Approach for Discrimination of AsO(2)(–) and H(2)PO(4)(–) |
title | Sequential Fluorescence Recognition of Molybdenum(VI),
Arsenite, and Phosphate Ions
in a Ratiometric Manner: A Facile Approach for Discrimination of AsO(2)(–) and H(2)PO(4)(–) |
title_full | Sequential Fluorescence Recognition of Molybdenum(VI),
Arsenite, and Phosphate Ions
in a Ratiometric Manner: A Facile Approach for Discrimination of AsO(2)(–) and H(2)PO(4)(–) |
title_fullStr | Sequential Fluorescence Recognition of Molybdenum(VI),
Arsenite, and Phosphate Ions
in a Ratiometric Manner: A Facile Approach for Discrimination of AsO(2)(–) and H(2)PO(4)(–) |
title_full_unstemmed | Sequential Fluorescence Recognition of Molybdenum(VI),
Arsenite, and Phosphate Ions
in a Ratiometric Manner: A Facile Approach for Discrimination of AsO(2)(–) and H(2)PO(4)(–) |
title_short | Sequential Fluorescence Recognition of Molybdenum(VI),
Arsenite, and Phosphate Ions
in a Ratiometric Manner: A Facile Approach for Discrimination of AsO(2)(–) and H(2)PO(4)(–) |
title_sort | sequential fluorescence recognition of molybdenum(vi),
arsenite, and phosphate ions
in a ratiometric manner: a facile approach for discrimination of aso(2)(–) and h(2)po(4)(–) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648501/ https://www.ncbi.nlm.nih.gov/pubmed/31460185 http://dx.doi.org/10.1021/acsomega.9b00377 |
work_keys_str_mv | AT banerjeemahuya sequentialfluorescencerecognitionofmolybdenumviarseniteandphosphateionsinaratiometricmannerafacileapproachfordiscriminationofaso2andh2po4 AT tasabyasachi sequentialfluorescencerecognitionofmolybdenumviarseniteandphosphateionsinaratiometricmannerafacileapproachfordiscriminationofaso2andh2po4 AT ghoshmilan sequentialfluorescencerecognitionofmolybdenumviarseniteandphosphateionsinaratiometricmannerafacileapproachfordiscriminationofaso2andh2po4 AT ghoshavijit sequentialfluorescencerecognitionofmolybdenumviarseniteandphosphateionsinaratiometricmannerafacileapproachfordiscriminationofaso2andh2po4 AT dasdebasis sequentialfluorescencerecognitionofmolybdenumviarseniteandphosphateionsinaratiometricmannerafacileapproachfordiscriminationofaso2andh2po4 |