Cargando…
Manganese(I)-Catalyzed Cross-Coupling of Ketones and Secondary Alcohols with Primary Alcohols
[Image: see text] Catalytic cross-coupling of ketones and secondary alcohols with primary alcohols is reported. An abundant manganese-based pincer catalyst catalyzes the reactions. Low loading of catalyst (2 mol %) and catalytic use of a mild base (5–10 mol %) are sufficient for efficient cross-coup...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648503/ https://www.ncbi.nlm.nih.gov/pubmed/31460172 http://dx.doi.org/10.1021/acsomega.9b01246 |
_version_ | 1783437883991916544 |
---|---|
author | Gawali, Suhas Shahaji Pandia, Biplab Keshari Pal, Souvik Gunanathan, Chidambaram |
author_facet | Gawali, Suhas Shahaji Pandia, Biplab Keshari Pal, Souvik Gunanathan, Chidambaram |
author_sort | Gawali, Suhas Shahaji |
collection | PubMed |
description | [Image: see text] Catalytic cross-coupling of ketones and secondary alcohols with primary alcohols is reported. An abundant manganese-based pincer catalyst catalyzes the reactions. Low loading of catalyst (2 mol %) and catalytic use of a mild base (5–10 mol %) are sufficient for efficient cross-coupling. Various aryl and heteroaryl ketones are catalytically cross-coupled with primary alcohols to provide the selective α-alkylated products. Challenging α-ethylation of ketones is also attained using ethanol as an alkylating reagent. Further, direct use of secondary alcohols in the reaction results in in situ oxidation to provide the ketone intermediates, which undergo selective α-alkylation. The reaction proceeds via the borrowing hydrogen pathway. The catalyst oxidizes the primary alcohols to aldehydes, which undergo subsequent aldol condensation with ketones, promoted by catalytic amount of Cs(2)CO(3), to provide the α,β-unsaturated ketone intermediates. The hydrogen liberated from oxidation of alcohols is used for hydrogenation of α,β-unsaturated ketone intermediates. Notably either water or water and dihydrogen are the only byproducts in these environmentally benign catalytic processes. Mechanistic studies allowed inferring all of the intermediates involved. Dearomatization–aromatization metal–ligand cooperation in the catalyst facilitates the facile O–H bond activation of both primary and secondary alcohols, and the resultant manganese alkoxide complexes produce corresponding carbonyl compounds, perhaps via β-hydride elimination. The manganese(I) hydride intermediate plays dual role as it hydrogenates α,β-unsaturated ketones and liberates molecular hydrogen to regenerate the catalytically active dearomatized intermediate. Metal–ligand cooperation allows all of the manganese intermediates to exist in same oxidation state (+1) and plays an important role in these catalytic cross-coupling reactions. |
format | Online Article Text |
id | pubmed-6648503 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66485032019-08-27 Manganese(I)-Catalyzed Cross-Coupling of Ketones and Secondary Alcohols with Primary Alcohols Gawali, Suhas Shahaji Pandia, Biplab Keshari Pal, Souvik Gunanathan, Chidambaram ACS Omega [Image: see text] Catalytic cross-coupling of ketones and secondary alcohols with primary alcohols is reported. An abundant manganese-based pincer catalyst catalyzes the reactions. Low loading of catalyst (2 mol %) and catalytic use of a mild base (5–10 mol %) are sufficient for efficient cross-coupling. Various aryl and heteroaryl ketones are catalytically cross-coupled with primary alcohols to provide the selective α-alkylated products. Challenging α-ethylation of ketones is also attained using ethanol as an alkylating reagent. Further, direct use of secondary alcohols in the reaction results in in situ oxidation to provide the ketone intermediates, which undergo selective α-alkylation. The reaction proceeds via the borrowing hydrogen pathway. The catalyst oxidizes the primary alcohols to aldehydes, which undergo subsequent aldol condensation with ketones, promoted by catalytic amount of Cs(2)CO(3), to provide the α,β-unsaturated ketone intermediates. The hydrogen liberated from oxidation of alcohols is used for hydrogenation of α,β-unsaturated ketone intermediates. Notably either water or water and dihydrogen are the only byproducts in these environmentally benign catalytic processes. Mechanistic studies allowed inferring all of the intermediates involved. Dearomatization–aromatization metal–ligand cooperation in the catalyst facilitates the facile O–H bond activation of both primary and secondary alcohols, and the resultant manganese alkoxide complexes produce corresponding carbonyl compounds, perhaps via β-hydride elimination. The manganese(I) hydride intermediate plays dual role as it hydrogenates α,β-unsaturated ketones and liberates molecular hydrogen to regenerate the catalytically active dearomatized intermediate. Metal–ligand cooperation allows all of the manganese intermediates to exist in same oxidation state (+1) and plays an important role in these catalytic cross-coupling reactions. American Chemical Society 2019-06-20 /pmc/articles/PMC6648503/ /pubmed/31460172 http://dx.doi.org/10.1021/acsomega.9b01246 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Gawali, Suhas Shahaji Pandia, Biplab Keshari Pal, Souvik Gunanathan, Chidambaram Manganese(I)-Catalyzed Cross-Coupling of Ketones and Secondary Alcohols with Primary Alcohols |
title | Manganese(I)-Catalyzed Cross-Coupling of Ketones and
Secondary Alcohols with Primary Alcohols |
title_full | Manganese(I)-Catalyzed Cross-Coupling of Ketones and
Secondary Alcohols with Primary Alcohols |
title_fullStr | Manganese(I)-Catalyzed Cross-Coupling of Ketones and
Secondary Alcohols with Primary Alcohols |
title_full_unstemmed | Manganese(I)-Catalyzed Cross-Coupling of Ketones and
Secondary Alcohols with Primary Alcohols |
title_short | Manganese(I)-Catalyzed Cross-Coupling of Ketones and
Secondary Alcohols with Primary Alcohols |
title_sort | manganese(i)-catalyzed cross-coupling of ketones and
secondary alcohols with primary alcohols |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648503/ https://www.ncbi.nlm.nih.gov/pubmed/31460172 http://dx.doi.org/10.1021/acsomega.9b01246 |
work_keys_str_mv | AT gawalisuhasshahaji manganeseicatalyzedcrosscouplingofketonesandsecondaryalcoholswithprimaryalcohols AT pandiabiplabkeshari manganeseicatalyzedcrosscouplingofketonesandsecondaryalcoholswithprimaryalcohols AT palsouvik manganeseicatalyzedcrosscouplingofketonesandsecondaryalcoholswithprimaryalcohols AT gunanathanchidambaram manganeseicatalyzedcrosscouplingofketonesandsecondaryalcoholswithprimaryalcohols |