Cargando…

Toward a Better Understanding of Different Dissolution Behavior of Starches in Aqueous Ionic Liquids at Room Temperature

[Image: see text] The purpose of this study was to understand the dissolution behavior of maize and potato starches in 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]):water mixtures at room temperature. With an increasing ratio of ionic liquid (IL):water, the long- and short-range ordered structur...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jinwei, Ren, Fei, Yu, Jinglin, Copeland, Les, Wang, Shuo, Wang, Shujun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648505/
https://www.ncbi.nlm.nih.gov/pubmed/31460234
http://dx.doi.org/10.1021/acsomega.9b00962
Descripción
Sumario:[Image: see text] The purpose of this study was to understand the dissolution behavior of maize and potato starches in 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]):water mixtures at room temperature. With an increasing ratio of ionic liquid (IL):water, the long- and short-range ordered structures and granule morphology of both starches were disrupted progressively. The multiscale structure of maize starch was disrupted completely after treatment with the [Emim][OAc]:water mixture of 6:4, indicating good dissolution performance of this mixture for maize starch. This mixture seemed to provide a balance between the viscosity of the solvent and availability of ions to disrupt starch H-bonds. The different dissolution behaviors of maize and potato starches in [Emim][OAc]:water mixtures were attributed to structural differences of the granule surfaces. Our results showed that the dissolution behavior of starches was affected by both starch sources and properties of [Emim][OAc]:water mixtures, which may provide guidance for the development of green technology for processing of biopolymers with low energy consumption.