Cargando…

Thermal Conversion of Ethanol into Carbon Nanotube Coatings with Adjusted Packing Density

[Image: see text] The ability to control the growth of carbon nanotube (CNT) coatings with adjusted packing density is essential for the design of functional devices with an emphasized interaction with the surrounding medium. This challenge is addressed in the present study using an innovative singl...

Descripción completa

Detalles Bibliográficos
Autores principales: Basheer, Hameeda Jagalur, Baba, Kamal, Bahlawane, Naoufal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648536/
https://www.ncbi.nlm.nih.gov/pubmed/31460134
http://dx.doi.org/10.1021/acsomega.9b00616
Descripción
Sumario:[Image: see text] The ability to control the growth of carbon nanotube (CNT) coatings with adjusted packing density is essential for the design of functional devices with an emphasized interaction with the surrounding medium. This challenge is addressed in the present study using an innovative single-pot chemical vapor deposition (CVD) process based on the thermal conversion of ethanol to CNTs. Benefitting from the relatively safe and easily bio-derived carbon source is enabled using a cobalt catalyst and a magnesium oxide promoter. The resulting innovative direct-liquid injection CVD opens up new opportunities for low-temperature CNT deposition. The simultaneous formation of a cobalt catalyst along the process results in a sustainable CNT growth that is substantially emphasized with the deposition time. Furthermore, the formation of these catalyst nanoparticles in the porous structure nucleates new CNTs and results in a substantial film densification. Relative to densely packed CNTs that feature a density exceeding 1000 mg/cm(3), the investigated process enables an adjusted density from 0.1 to 20 mg/cm(3) with no significant impact on the quality of the obtained multiwalled CNTs. This unprecedented control over the packing density of the CNT film paves the way toward the development of high-performance functional nanocomposite coatings.