Cargando…

Exploring the Effects of Stereo-Defect Distribution on Nonisothermal Crystallization and Melting Behavior of β-Nucleated Isotactic Polypropylene/Graphene Oxide Composites

[Image: see text] In this work, using two isotactic polypropylene (iPP) resins with similar average isotacticity and molecular weight but different uniformities of stereo-defect distribution, the β-nucleated iPP/graphene oxide (β-iPP/GO) composites (NPP-A and NPP-B) were prepared to investigate the...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Xi, Fang, Yiwei, Yu, Yansong, Kang, Jian, Cao, Ya, Xiang, Ming, Li, Lu, Sheng, Xingyue, Hao, Zengheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648541/
https://www.ncbi.nlm.nih.gov/pubmed/31459526
http://dx.doi.org/10.1021/acsomega.8b03413
Descripción
Sumario:[Image: see text] In this work, using two isotactic polypropylene (iPP) resins with similar average isotacticity and molecular weight but different uniformities of stereo-defect distribution, the β-nucleated iPP/graphene oxide (β-iPP/GO) composites (NPP-A and NPP-B) were prepared to investigate the effect of stereo-defect distribution on the nonisothermal crystallization kinetics and polymorphic melting behavior of the composites by means of scanning electron microscopy, wide-angle X-ray diffraction, and differential scanning calorimetry. The results showed that more uniform stereo-defect distribution led to a slight increase of the crystallization rate and decrease of the crystallization activation energy E(c). NPP-B with more uniform stereo-defect was more favorable for the formation of a large amount of β-phase. Moreover, the role of the cooling rate was also discussed and it was found that the higher the cooling rate, the higher the β-phase content and the smaller the crystalline sizes, meanwhile, the higher the amount of β-phase with relatively lower thermal stability that will take part in β–α recrystallization during the subsequent melting process. For β-iPP/GO composites, although the cooling rate greatly influences the polymorphic behavior and crystalline structures of the composites, the uniformity of stereo-defect distribution was found to be the first factor determining the formation of the β-phase.