Cargando…
Solvation Descriptors for Zwitterionic α-Aminoacids; Estimation of Water–Solvent Partition Coefficients, Solubilities, and Hydrogen-Bond Acidity and Hydrogen-Bond Basicity
[Image: see text] The literature data on solubilities and water–solvent partition coefficients have been used to obtain properties or “Absolv descriptors” for zwitterionic α-aminoacids: glycine, α-alanine (α-aminopropanoic acid), α-aminobutanoic acid, norvaline (α-aminopentanoic acid), norleucine (α...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648601/ https://www.ncbi.nlm.nih.gov/pubmed/31459518 http://dx.doi.org/10.1021/acsomega.8b03242 |
Sumario: | [Image: see text] The literature data on solubilities and water–solvent partition coefficients have been used to obtain properties or “Absolv descriptors” for zwitterionic α-aminoacids: glycine, α-alanine (α-aminopropanoic acid), α-aminobutanoic acid, norvaline (α-aminopentanoic acid), norleucine (α-aminohexanoic acid), valine (α-amino-3-methylbutanoic acid), leucine (α-amino-4-methylpentanoic acid), and α-phenylalanine. Together with equations that we have previously constructed, these descriptors can be used to estimate further solubilities and partition coefficients in a variety of organic solvents and in water–methanol and water–ethanol mixtures. It is shown that equations for neutral solutes are inadequate for the description of solubilities and partition coefficients for these α-aminoacids, and our equations developed for use with both neutral and ionic solutes must be used. The Absolv descriptors include those for hydrogen-bond acidity, A, and hydrogen-bond basicity, B. We find that both of these descriptors are far smaller in value than those for compounds that contain the corresponding ionic groups. Thus, A for α-alanine is 0.28, but A for the ethylammonium cation is 1.31; B for α-alanine is 0.83, and yet B for the acetate anion is no less than 2.93. The additional descriptors that we developed for equations that involve ions, J(+) and J(–), are very significant for the α-aminoacids, although numerically smaller than for ionic species such as EtNH(3)(+) and CH(3)CO(2)(–). |
---|