Cargando…

A Protocol To Characterize Peptide-Based Drug Delivery Systems for miRNAs

[Image: see text] Micro RNA (miRNA)-based medicines have attracted attention as new therapeutic strategies to treat genetic diseases and metabolic and immunological disorders. MiRNAs have emerged as key mediators of metabolic processes fulfilling regulatory functions in maintaining physiological con...

Descripción completa

Detalles Bibliográficos
Autores principales: Schachner-Nedherer, Anna-Laurence, Werzer, Oliver, Zimmer, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648615/
https://www.ncbi.nlm.nih.gov/pubmed/31459813
http://dx.doi.org/10.1021/acsomega.8b03562
Descripción
Sumario:[Image: see text] Micro RNA (miRNA)-based medicines have attracted attention as new therapeutic strategies to treat genetic diseases and metabolic and immunological disorders. MiRNAs have emerged as key mediators of metabolic processes fulfilling regulatory functions in maintaining physiological conditions, while altered miRNA expression profiles are often associated with genetic diseases. However, naked miRNAs exhibit poor enzymatic stability, biomembrane permeation, and cellular uptake. To overcome these limitations, the development of appropriate drug delivery systems (DDS) is necessary. Herein, a DDS is characterized being assembled from miRNA-27a (negative regulator in fat metabolism) and the amphipathic N-TER peptide. Dynamic light scattering (DLS), electrophoretic light scattering, and atomic force microscopy (AFM) are used to investigate physicochemical properties (i.e., size, shape, and charge) of the DDS. Although surface charges should provide decent stabilization, the AFM results confirm a state of agglomeration, which is also suggested by DLS. Furthermore, AFM studies reveal adhesion on hydrophilic as well as hydrophobic substrates, which is related to the amphipathic properties of the N-TER peptide. Physicochemical properties of DDS are important parameters, which have an impact on cell internalization/uptake and have to be taken into account for in vitro studies to develop a successful peptide-based DDS for miRNA replacement therapy in metabolic diseases, such as obesity and others.