Cargando…

Salt-Tolerant Superabsorbent Polymer with High Capacity of Water-Nutrient Retention Derived from Sulfamic Acid-Modified Starch

[Image: see text] The application of superabsorbent polymers (SAPs) is hindered because their absorption capability is greatly affected by the electrolytes in a solution. A novel modified water-absorbent polymer was fabricated by solution polymerization of sulfamic acid-modified starch and acrylic a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Chenhao, Zhang, Min, Liu, Zhiguang, Guo, Yanle, Zhang, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648645/
https://www.ncbi.nlm.nih.gov/pubmed/31459741
http://dx.doi.org/10.1021/acsomega.9b00486
Descripción
Sumario:[Image: see text] The application of superabsorbent polymers (SAPs) is hindered because their absorption capability is greatly affected by the electrolytes in a solution. A novel modified water-absorbent polymer was fabricated by solution polymerization of sulfamic acid-modified starch and acrylic acid; the swelling ratios of this absorbent polymer were 1026 g/g in deionized water and 145 g/g in 0.9% sodium chloride solution and increased by 99.5 and 13.4%, respectively, when compared with ordinary starch-grafted acrylic SAPs. The water absorption capacity was measured in water at different pH values, salt concentrations, and temperatures. In addition, water and fertilizer retentions were studied by simulated leaching tests in a soil column. The results showed that water absorption capacities of the modified SAP in salt solutions were improved due to the adsorption and transfer of water molecules by the sulfonic acid groups. Compared to the losses when there was no superabsorbent treatment, the water, nitrate, ammonium nitrogen, and water-soluble potassium losses during the salt-tolerant superabsorbent treatment were significantly reduced by 18.5, 22.8, 88.0, and 63.8%, respectively. The method introduced in this study could guide the development and wide application of salt-tolerant SAPs in agriculture and horticulture.