Cargando…
Fast and Accurate Artificial Neural Network Potential Model for MAPbI(3) Perovskite Materials
[Image: see text] Hybrid organic–inorganic perovskite materials are promising materials for photovoltaic and optoelectronic applications. Nevertheless, the construction of a computationally efficient potential model for atomistic simulations of perovskite with high fidelity to ab initio calculations...
Autores principales: | Chen, Hsin-An, Pao, Chun-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648651/ https://www.ncbi.nlm.nih.gov/pubmed/31460193 http://dx.doi.org/10.1021/acsomega.9b00378 |
Ejemplares similares
-
MAPbI(3) microneedle-arrays for perovskite photovoltaic application
por: Mahmood, Khalid, et al.
Publicado: (2018) -
Effect of Cs(+) Doping on the Carrier Dynamics of MAPbI(3) Perovskite
por: Duan, Menghan, et al.
Publicado: (2023) -
Substrate-dependent electronic structure and film formation of MAPbI(3) perovskites
por: Olthof, Selina, et al.
Publicado: (2017) -
One-dimensional facile growth of MAPbI(3) perovskite micro-rods
por: Mishra, Arti, et al.
Publicado: (2019) -
Auger Electron Spectroscopy Analysis of the Thermally
Induced Degradation of MAPbI(3) Perovskite Films
por: Lin, Wei-Chun, et al.
Publicado: (2021)