Cargando…

Binder-Free Modification of a Glassy Carbon Electrode by Using Porous Carbon for Voltammetric Determination of Nitro Isomers

[Image: see text] In this study, Liquidambar formosana tree leaves have been used as a renewable biomass precursor for preparing porous carbons (PCs). The PCs were produced by pyrolysis of natural waste of leaves after 10% KOH activation under a nitrogen atmosphere and characterized by a variety of...

Descripción completa

Detalles Bibliográficos
Autores principales: Manavalan, Shaktivel, Veerakumar, Pitchaimani, Chen, Shen-Ming, Murugan, Keerthi, Lin, King-Chuen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648727/
https://www.ncbi.nlm.nih.gov/pubmed/31459978
http://dx.doi.org/10.1021/acsomega.9b00622
Descripción
Sumario:[Image: see text] In this study, Liquidambar formosana tree leaves have been used as a renewable biomass precursor for preparing porous carbons (PCs). The PCs were produced by pyrolysis of natural waste of leaves after 10% KOH activation under a nitrogen atmosphere and characterized by a variety of state-of-the-art techniques. The PCs possess a large surface area, micro-/mesoporosity, and functional groups on its surface. A glassy carbon electrode modified with high PCs was explored as an efficient binder-free electrocatalyst material for the voltammetric determination of nitro isomers such as 3-nitroaniline (3-NA) and 4-nitroaniline (4-NA). Under optimal experimental conditions, the electrochemical detection of 3-NA and 4-NA was found to have a wide linear range of 0.2–115.6 and 0.5–120 μM and a low detection limit of 0.0551 and 0.0326 μM, respectively, with appreciable selectivity. This route not only enhanced the benefit from biomass wastes but also reduced the cost of producing electrode materials for electrochemical sensors. Additionally, the sensor was successfully applied in the determination of nitro isomers even in the presence of other common electroactive interference and real samples analysis (beverage and pineapple jam solutions). Therefore, the proposed method is simple, rapid, stable, sensitive, specific, reproducible, and cost-effective and can be applicable for real sample detection.