Cargando…
Influence of Spin State and Cation Distribution on Stability and Electronic Properties of Ternary Transition-Metal Oxides
[Image: see text] This work is a systematic ab initio study of the influence of spin state and cation distribution on the stability, dielectric constant, electronic band gap, and density of states of ternary transition-metal oxides. As an example, the chemical family of spinel ferrites MFe(2)O(4), w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648862/ https://www.ncbi.nlm.nih.gov/pubmed/31459622 http://dx.doi.org/10.1021/acsomega.8b03254 |
_version_ | 1783437960487632896 |
---|---|
author | Ulpe, Anna C. Bauerfeind, Katharina C. L. Bredow, Thomas |
author_facet | Ulpe, Anna C. Bauerfeind, Katharina C. L. Bredow, Thomas |
author_sort | Ulpe, Anna C. |
collection | PubMed |
description | [Image: see text] This work is a systematic ab initio study of the influence of spin state and cation distribution on the stability, dielectric constant, electronic band gap, and density of states of ternary transition-metal oxides. As an example, the chemical family of spinel ferrites MFe(2)O(4), with M = Mg, Sc–Zn is chosen. Dielectric constant and band gap are calculated for various spin states and cation configurations via dielectric-dependent self-consistent hybrid functionals and compared to available experimental data. When choosing the most stable spin state and cation configuration, the calculated electronic properties are in reasonable agreement with measured values. The nature of the excitation is investigated through projected density of states. A pronounced dependence of band gap energy and dielectric constant on the spin state and cation configuration is observed, which is a possible explanation for the large variation of the experimental results, in particular, if several states are energetically close. |
format | Online Article Text |
id | pubmed-6648862 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66488622019-08-27 Influence of Spin State and Cation Distribution on Stability and Electronic Properties of Ternary Transition-Metal Oxides Ulpe, Anna C. Bauerfeind, Katharina C. L. Bredow, Thomas ACS Omega [Image: see text] This work is a systematic ab initio study of the influence of spin state and cation distribution on the stability, dielectric constant, electronic band gap, and density of states of ternary transition-metal oxides. As an example, the chemical family of spinel ferrites MFe(2)O(4), with M = Mg, Sc–Zn is chosen. Dielectric constant and band gap are calculated for various spin states and cation configurations via dielectric-dependent self-consistent hybrid functionals and compared to available experimental data. When choosing the most stable spin state and cation configuration, the calculated electronic properties are in reasonable agreement with measured values. The nature of the excitation is investigated through projected density of states. A pronounced dependence of band gap energy and dielectric constant on the spin state and cation configuration is observed, which is a possible explanation for the large variation of the experimental results, in particular, if several states are energetically close. American Chemical Society 2019-02-25 /pmc/articles/PMC6648862/ /pubmed/31459622 http://dx.doi.org/10.1021/acsomega.8b03254 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Ulpe, Anna C. Bauerfeind, Katharina C. L. Bredow, Thomas Influence of Spin State and Cation Distribution on Stability and Electronic Properties of Ternary Transition-Metal Oxides |
title | Influence of Spin State and Cation Distribution on
Stability and Electronic Properties of Ternary Transition-Metal Oxides |
title_full | Influence of Spin State and Cation Distribution on
Stability and Electronic Properties of Ternary Transition-Metal Oxides |
title_fullStr | Influence of Spin State and Cation Distribution on
Stability and Electronic Properties of Ternary Transition-Metal Oxides |
title_full_unstemmed | Influence of Spin State and Cation Distribution on
Stability and Electronic Properties of Ternary Transition-Metal Oxides |
title_short | Influence of Spin State and Cation Distribution on
Stability and Electronic Properties of Ternary Transition-Metal Oxides |
title_sort | influence of spin state and cation distribution on
stability and electronic properties of ternary transition-metal oxides |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648862/ https://www.ncbi.nlm.nih.gov/pubmed/31459622 http://dx.doi.org/10.1021/acsomega.8b03254 |
work_keys_str_mv | AT ulpeannac influenceofspinstateandcationdistributiononstabilityandelectronicpropertiesofternarytransitionmetaloxides AT bauerfeindkatharinacl influenceofspinstateandcationdistributiononstabilityandelectronicpropertiesofternarytransitionmetaloxides AT bredowthomas influenceofspinstateandcationdistributiononstabilityandelectronicpropertiesofternarytransitionmetaloxides |