Cargando…
Influence of Metal–Ligand Coordination on the Elemental Growth and Alloying Composition of Pt–Ni Octahedral Nanoparticles for Oxygen Reduction Electrocatalysis
[Image: see text] Understanding the role of surfactants or ligands on the growth mechanism of metal/alloy nanoparticles (NPs) is important for controlled synthesis of functional metallic NPs with tailored structures and properties. There have been a number of works showing the significant impact of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648910/ https://www.ncbi.nlm.nih.gov/pubmed/31459917 http://dx.doi.org/10.1021/acsomega.8b03366 |
_version_ | 1783437971649724416 |
---|---|
author | Qin, Fei Ma, Yangbo Miao, Linqin Wang, Zhongxiang Gan, Lin |
author_facet | Qin, Fei Ma, Yangbo Miao, Linqin Wang, Zhongxiang Gan, Lin |
author_sort | Qin, Fei |
collection | PubMed |
description | [Image: see text] Understanding the role of surfactants or ligands on the growth mechanism of metal/alloy nanoparticles (NPs) is important for controlled synthesis of functional metallic NPs with tailored structures and properties. There have been a number of works showing the significant impact of surfactants/ligands on the shape-controlled synthesis of nanocrystals with well-defined surfaces. Beyond the morphological shape control, impact of the surfactants/ligands on the alloying structure of bimetallic nanocrystals, however, still remains largely unaddressed. We reveal here a significant effect of benzoic acid ligand on the elemental growth and alloying phase structure of octahedral Pt–Ni NPs, a class of highly active electrocatalyst for oxygen reduction reaction in fuel cells. Contrary to previous reports showing the critical role of benzoic acid in directing the growth of octahedral Pt–Ni NPs, we found that benzoic acid played a minor role in forming the octahedral shape; instead, it can strongly coordinate with Ni cation and significantly slows down its reduction rate, leading to a phase separation in the Pt–Ni NP products (a mixture of Pt-rich octahedral NPs and nearly pure Ni NPs). Such phase separation further resulted in a lower catalytic activity and stability. These results help us comprehensively understand the effect of metal–ligand coordination chemistry on the elemental growth mechanism and alloying phase structure of bimetallic NPs, complementing previous emphasis on the role of surfactants in purely morphological shape control. |
format | Online Article Text |
id | pubmed-6648910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66489102019-08-27 Influence of Metal–Ligand Coordination on the Elemental Growth and Alloying Composition of Pt–Ni Octahedral Nanoparticles for Oxygen Reduction Electrocatalysis Qin, Fei Ma, Yangbo Miao, Linqin Wang, Zhongxiang Gan, Lin ACS Omega [Image: see text] Understanding the role of surfactants or ligands on the growth mechanism of metal/alloy nanoparticles (NPs) is important for controlled synthesis of functional metallic NPs with tailored structures and properties. There have been a number of works showing the significant impact of surfactants/ligands on the shape-controlled synthesis of nanocrystals with well-defined surfaces. Beyond the morphological shape control, impact of the surfactants/ligands on the alloying structure of bimetallic nanocrystals, however, still remains largely unaddressed. We reveal here a significant effect of benzoic acid ligand on the elemental growth and alloying phase structure of octahedral Pt–Ni NPs, a class of highly active electrocatalyst for oxygen reduction reaction in fuel cells. Contrary to previous reports showing the critical role of benzoic acid in directing the growth of octahedral Pt–Ni NPs, we found that benzoic acid played a minor role in forming the octahedral shape; instead, it can strongly coordinate with Ni cation and significantly slows down its reduction rate, leading to a phase separation in the Pt–Ni NP products (a mixture of Pt-rich octahedral NPs and nearly pure Ni NPs). Such phase separation further resulted in a lower catalytic activity and stability. These results help us comprehensively understand the effect of metal–ligand coordination chemistry on the elemental growth mechanism and alloying phase structure of bimetallic NPs, complementing previous emphasis on the role of surfactants in purely morphological shape control. American Chemical Society 2019-05-08 /pmc/articles/PMC6648910/ /pubmed/31459917 http://dx.doi.org/10.1021/acsomega.8b03366 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Qin, Fei Ma, Yangbo Miao, Linqin Wang, Zhongxiang Gan, Lin Influence of Metal–Ligand Coordination on the Elemental Growth and Alloying Composition of Pt–Ni Octahedral Nanoparticles for Oxygen Reduction Electrocatalysis |
title | Influence of Metal–Ligand Coordination on the
Elemental Growth and Alloying Composition of Pt–Ni Octahedral
Nanoparticles for Oxygen Reduction Electrocatalysis |
title_full | Influence of Metal–Ligand Coordination on the
Elemental Growth and Alloying Composition of Pt–Ni Octahedral
Nanoparticles for Oxygen Reduction Electrocatalysis |
title_fullStr | Influence of Metal–Ligand Coordination on the
Elemental Growth and Alloying Composition of Pt–Ni Octahedral
Nanoparticles for Oxygen Reduction Electrocatalysis |
title_full_unstemmed | Influence of Metal–Ligand Coordination on the
Elemental Growth and Alloying Composition of Pt–Ni Octahedral
Nanoparticles for Oxygen Reduction Electrocatalysis |
title_short | Influence of Metal–Ligand Coordination on the
Elemental Growth and Alloying Composition of Pt–Ni Octahedral
Nanoparticles for Oxygen Reduction Electrocatalysis |
title_sort | influence of metal–ligand coordination on the
elemental growth and alloying composition of pt–ni octahedral
nanoparticles for oxygen reduction electrocatalysis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648910/ https://www.ncbi.nlm.nih.gov/pubmed/31459917 http://dx.doi.org/10.1021/acsomega.8b03366 |
work_keys_str_mv | AT qinfei influenceofmetalligandcoordinationontheelementalgrowthandalloyingcompositionofptnioctahedralnanoparticlesforoxygenreductionelectrocatalysis AT mayangbo influenceofmetalligandcoordinationontheelementalgrowthandalloyingcompositionofptnioctahedralnanoparticlesforoxygenreductionelectrocatalysis AT miaolinqin influenceofmetalligandcoordinationontheelementalgrowthandalloyingcompositionofptnioctahedralnanoparticlesforoxygenreductionelectrocatalysis AT wangzhongxiang influenceofmetalligandcoordinationontheelementalgrowthandalloyingcompositionofptnioctahedralnanoparticlesforoxygenreductionelectrocatalysis AT ganlin influenceofmetalligandcoordinationontheelementalgrowthandalloyingcompositionofptnioctahedralnanoparticlesforoxygenreductionelectrocatalysis |