Cargando…

Determination of Cyanide in Water and Food Samples Using an Efficient Naphthalene-Based Ratiometric Fluorescent Probe

[Image: see text] Monitoring cyanide levels in water and food samples is crucial. Herein, we rationally developed a simple and efficient fluorescent probe for cyanide determination. The probe displayed selective ratiometric fluorescent response to cyanide. In addition, after treatment with cyanide,...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, Lingliang, Yuan, Xiangqi, Cao, Siyu, Han, Yuanyuan, Liu, Weiguo, Chen, Qian, Han, Zhixiang, Wang, Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649237/
https://www.ncbi.nlm.nih.gov/pubmed/31460176
http://dx.doi.org/10.1021/acsomega.9b01308
Descripción
Sumario:[Image: see text] Monitoring cyanide levels in water and food samples is crucial. Herein, we rationally developed a simple and efficient fluorescent probe for cyanide determination. The probe displayed selective ratiometric fluorescent response to cyanide. In addition, after treatment with cyanide, the fluorescence ratios (I(509)/I(466)) exhibited a good linearity with cyanide concentration in the range of 0–60 μM, and the detection limit was determined to be 0.23 μM (S/N = 3). Significantly, the practical application demonstrated that the probe was able to quantitatively detect cyanide concentration in natural water samples. Monitoring of endogenous cyanide in cherry nut by the probe was also successfully conducted. Notably, upon fabrication of test strips, the probe could be conveniently utilized for field measurement of cyanide in bitter almond without relying on sophistical instruments. Furthermore, the cyanide in potato tissues was determined for the first time by means of fluorescence imaging.