Cargando…

Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment

[Image: see text] A simplistic and low-cost method that dramatically improves the performance of solution-grown hematite photoanodes for solar-driven water splitting through incorporation of nanohybrid metal oxide overlayers was developed. By heating the α-Fe(2)O(3)/SnO(2)–TiO(2) electrode in an ine...

Descripción completa

Detalles Bibliográficos
Autores principales: Ho-Kimura, SocMan, Williamson, Benjamin A. D., Sathasivam, Sanjayan, Moniz, Savio J. A., He, Guanjie, Luo, Wenjun, Scanlon, David O., Tang, Junwang, Parkin, Ivan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649254/
https://www.ncbi.nlm.nih.gov/pubmed/31459412
http://dx.doi.org/10.1021/acsomega.8b02444
_version_ 1783438005541797888
author Ho-Kimura, SocMan
Williamson, Benjamin A. D.
Sathasivam, Sanjayan
Moniz, Savio J. A.
He, Guanjie
Luo, Wenjun
Scanlon, David O.
Tang, Junwang
Parkin, Ivan P.
author_facet Ho-Kimura, SocMan
Williamson, Benjamin A. D.
Sathasivam, Sanjayan
Moniz, Savio J. A.
He, Guanjie
Luo, Wenjun
Scanlon, David O.
Tang, Junwang
Parkin, Ivan P.
author_sort Ho-Kimura, SocMan
collection PubMed
description [Image: see text] A simplistic and low-cost method that dramatically improves the performance of solution-grown hematite photoanodes for solar-driven water splitting through incorporation of nanohybrid metal oxide overlayers was developed. By heating the α-Fe(2)O(3)/SnO(2)–TiO(2) electrode in an inert atmosphere, such as argon or nitrogen, the photocurrent increased to over 2 mA/cm(2) at 1.23 V versus a reversible hydrogen electrode, which is 10 times higher than that of pure hematite under 1 sun (100 mW/cm(2), AM 1.5G) light illumination. For the first time, we found a significant morphological difference between argon and nitrogen gas heat-treated hematite films and discussed the consequences for photoresponse. The origin for the enhancement, probed via theoretical modeling, stems from the facile incorporation of low formation energy dopants into the Fe(2)O(3) layer at the interface of the metal oxide nanohybrid overlayer, which decreases recombination by increasing the electrical conductivity of Fe(2)O(3). These dopants diffuse from the overlayer into the α-Fe(2)O(3) layer readily under inert gas heat treatment. This simple yet effective strategy could be applied to other dopants to increase hematite performance for solar energy conversion applications.
format Online
Article
Text
id pubmed-6649254
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66492542019-08-27 Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment Ho-Kimura, SocMan Williamson, Benjamin A. D. Sathasivam, Sanjayan Moniz, Savio J. A. He, Guanjie Luo, Wenjun Scanlon, David O. Tang, Junwang Parkin, Ivan P. ACS Omega [Image: see text] A simplistic and low-cost method that dramatically improves the performance of solution-grown hematite photoanodes for solar-driven water splitting through incorporation of nanohybrid metal oxide overlayers was developed. By heating the α-Fe(2)O(3)/SnO(2)–TiO(2) electrode in an inert atmosphere, such as argon or nitrogen, the photocurrent increased to over 2 mA/cm(2) at 1.23 V versus a reversible hydrogen electrode, which is 10 times higher than that of pure hematite under 1 sun (100 mW/cm(2), AM 1.5G) light illumination. For the first time, we found a significant morphological difference between argon and nitrogen gas heat-treated hematite films and discussed the consequences for photoresponse. The origin for the enhancement, probed via theoretical modeling, stems from the facile incorporation of low formation energy dopants into the Fe(2)O(3) layer at the interface of the metal oxide nanohybrid overlayer, which decreases recombination by increasing the electrical conductivity of Fe(2)O(3). These dopants diffuse from the overlayer into the α-Fe(2)O(3) layer readily under inert gas heat treatment. This simple yet effective strategy could be applied to other dopants to increase hematite performance for solar energy conversion applications. American Chemical Society 2019-01-16 /pmc/articles/PMC6649254/ /pubmed/31459412 http://dx.doi.org/10.1021/acsomega.8b02444 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Ho-Kimura, SocMan
Williamson, Benjamin A. D.
Sathasivam, Sanjayan
Moniz, Savio J. A.
He, Guanjie
Luo, Wenjun
Scanlon, David O.
Tang, Junwang
Parkin, Ivan P.
Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment
title Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment
title_full Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment
title_fullStr Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment
title_full_unstemmed Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment
title_short Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment
title_sort origin of high-efficiency photoelectrochemical water splitting on hematite/functional nanohybrid metal oxide overlayer photoanode after a low temperature inert gas annealing treatment
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649254/
https://www.ncbi.nlm.nih.gov/pubmed/31459412
http://dx.doi.org/10.1021/acsomega.8b02444
work_keys_str_mv AT hokimurasocman originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment
AT williamsonbenjaminad originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment
AT sathasivamsanjayan originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment
AT monizsavioja originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment
AT heguanjie originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment
AT luowenjun originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment
AT scanlondavido originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment
AT tangjunwang originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment
AT parkinivanp originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment