Cargando…
Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment
[Image: see text] A simplistic and low-cost method that dramatically improves the performance of solution-grown hematite photoanodes for solar-driven water splitting through incorporation of nanohybrid metal oxide overlayers was developed. By heating the α-Fe(2)O(3)/SnO(2)–TiO(2) electrode in an ine...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649254/ https://www.ncbi.nlm.nih.gov/pubmed/31459412 http://dx.doi.org/10.1021/acsomega.8b02444 |
_version_ | 1783438005541797888 |
---|---|
author | Ho-Kimura, SocMan Williamson, Benjamin A. D. Sathasivam, Sanjayan Moniz, Savio J. A. He, Guanjie Luo, Wenjun Scanlon, David O. Tang, Junwang Parkin, Ivan P. |
author_facet | Ho-Kimura, SocMan Williamson, Benjamin A. D. Sathasivam, Sanjayan Moniz, Savio J. A. He, Guanjie Luo, Wenjun Scanlon, David O. Tang, Junwang Parkin, Ivan P. |
author_sort | Ho-Kimura, SocMan |
collection | PubMed |
description | [Image: see text] A simplistic and low-cost method that dramatically improves the performance of solution-grown hematite photoanodes for solar-driven water splitting through incorporation of nanohybrid metal oxide overlayers was developed. By heating the α-Fe(2)O(3)/SnO(2)–TiO(2) electrode in an inert atmosphere, such as argon or nitrogen, the photocurrent increased to over 2 mA/cm(2) at 1.23 V versus a reversible hydrogen electrode, which is 10 times higher than that of pure hematite under 1 sun (100 mW/cm(2), AM 1.5G) light illumination. For the first time, we found a significant morphological difference between argon and nitrogen gas heat-treated hematite films and discussed the consequences for photoresponse. The origin for the enhancement, probed via theoretical modeling, stems from the facile incorporation of low formation energy dopants into the Fe(2)O(3) layer at the interface of the metal oxide nanohybrid overlayer, which decreases recombination by increasing the electrical conductivity of Fe(2)O(3). These dopants diffuse from the overlayer into the α-Fe(2)O(3) layer readily under inert gas heat treatment. This simple yet effective strategy could be applied to other dopants to increase hematite performance for solar energy conversion applications. |
format | Online Article Text |
id | pubmed-6649254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66492542019-08-27 Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment Ho-Kimura, SocMan Williamson, Benjamin A. D. Sathasivam, Sanjayan Moniz, Savio J. A. He, Guanjie Luo, Wenjun Scanlon, David O. Tang, Junwang Parkin, Ivan P. ACS Omega [Image: see text] A simplistic and low-cost method that dramatically improves the performance of solution-grown hematite photoanodes for solar-driven water splitting through incorporation of nanohybrid metal oxide overlayers was developed. By heating the α-Fe(2)O(3)/SnO(2)–TiO(2) electrode in an inert atmosphere, such as argon or nitrogen, the photocurrent increased to over 2 mA/cm(2) at 1.23 V versus a reversible hydrogen electrode, which is 10 times higher than that of pure hematite under 1 sun (100 mW/cm(2), AM 1.5G) light illumination. For the first time, we found a significant morphological difference between argon and nitrogen gas heat-treated hematite films and discussed the consequences for photoresponse. The origin for the enhancement, probed via theoretical modeling, stems from the facile incorporation of low formation energy dopants into the Fe(2)O(3) layer at the interface of the metal oxide nanohybrid overlayer, which decreases recombination by increasing the electrical conductivity of Fe(2)O(3). These dopants diffuse from the overlayer into the α-Fe(2)O(3) layer readily under inert gas heat treatment. This simple yet effective strategy could be applied to other dopants to increase hematite performance for solar energy conversion applications. American Chemical Society 2019-01-16 /pmc/articles/PMC6649254/ /pubmed/31459412 http://dx.doi.org/10.1021/acsomega.8b02444 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Ho-Kimura, SocMan Williamson, Benjamin A. D. Sathasivam, Sanjayan Moniz, Savio J. A. He, Guanjie Luo, Wenjun Scanlon, David O. Tang, Junwang Parkin, Ivan P. Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment |
title | Origin of High-Efficiency Photoelectrochemical Water
Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer
Photoanode after a Low Temperature Inert Gas Annealing Treatment |
title_full | Origin of High-Efficiency Photoelectrochemical Water
Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer
Photoanode after a Low Temperature Inert Gas Annealing Treatment |
title_fullStr | Origin of High-Efficiency Photoelectrochemical Water
Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer
Photoanode after a Low Temperature Inert Gas Annealing Treatment |
title_full_unstemmed | Origin of High-Efficiency Photoelectrochemical Water
Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer
Photoanode after a Low Temperature Inert Gas Annealing Treatment |
title_short | Origin of High-Efficiency Photoelectrochemical Water
Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer
Photoanode after a Low Temperature Inert Gas Annealing Treatment |
title_sort | origin of high-efficiency photoelectrochemical water
splitting on hematite/functional nanohybrid metal oxide overlayer
photoanode after a low temperature inert gas annealing treatment |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649254/ https://www.ncbi.nlm.nih.gov/pubmed/31459412 http://dx.doi.org/10.1021/acsomega.8b02444 |
work_keys_str_mv | AT hokimurasocman originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment AT williamsonbenjaminad originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment AT sathasivamsanjayan originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment AT monizsavioja originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment AT heguanjie originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment AT luowenjun originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment AT scanlondavido originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment AT tangjunwang originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment AT parkinivanp originofhighefficiencyphotoelectrochemicalwatersplittingonhematitefunctionalnanohybridmetaloxideoverlayerphotoanodeafteralowtemperatureinertgasannealingtreatment |